Koinfo Jean Baptiste, Jiang Donghua, Chedjou Jean Chamberlain, Kengne Jacques, Nosirov Khabibullo
Faculty of Sciences, University of Dschang, Dschang, Cameroon.
School of Information Engineering, Chang'an University, Xi'an, 710064 China.
Cogn Neurodyn. 2025 Dec;19(1):63. doi: 10.1007/s11571-025-10240-2. Epub 2025 Apr 18.
This paper investigates the behavior of a Hopfield neural network consisting of four interconnected inertial neurons arranged in a loop configuration. The mathematical equation that governs the overall dynamic of the model is consists of a set of eight first-order ordinary differential equations (ODEs) with odd symmetry. The system has 81 equilibrium points, some of which undergo multiple Hopf bifurcations as a control parameter is varied. The maximum number of coexisting states is related to the maximum number of active equilibrium points. Through numerical investigations, intriguing nonlinear properties are discovered, including both homogeneous and heterogeneous multistability and the coexistence of up to sixteen bifurcation branches, the presence of multi-spiral chaos, crisis phenomenon, period splitting and the oscillation death phenomenon. In order to obtain a comprehensive understanding of the dynamics, various tools are used, such as phase portraits, bifurcation diagrams, Poincare maps, frequency spectra, Lyapunov exponent spectra, and attraction basins. A Significant achievement of this study is the demonstration that coupling inertial neurons can be an effective method to generate multi-spiral chaotic signals. The overall dynamics is non-hidden and meticulous adjustment of the gradient connected to the fourth neuron allows to complete annihilate oscillations (no motion) in the neural network in a particular interval. Finally, an electronic circuit inspired by the coupled inertial neuron system is designed using Orcad-PSpice software and implemented using an Arduino-based microcontroller. The simulation results from PSpice and microcontroller confirm the findings from the theoretical analysis.
本文研究了一个由四个相互连接的惯性神经元组成的霍普菲尔德神经网络的行为,这些神经元以环形配置排列。控制该模型整体动态的数学方程由一组具有奇对称性的八个一阶常微分方程(ODE)组成。该系统有81个平衡点,其中一些平衡点在控制参数变化时会经历多次霍普夫分岔。共存状态的最大数量与活动平衡点的最大数量有关。通过数值研究,发现了有趣的非线性特性,包括均匀和非均匀多稳定性以及多达十六个分岔分支的共存、多螺旋混沌的存在、危机现象、周期分裂和振荡死亡现象。为了全面理解动力学,使用了各种工具,如相图、分岔图、庞加莱映射、频谱、李雅普诺夫指数谱和吸引子盆地。这项研究的一个重要成果是证明了耦合惯性神经元可以是产生多螺旋混沌信号的有效方法。整体动力学是非隐藏的,对连接到第四个神经元的梯度进行精细调整可以在特定区间内完全消除神经网络中的振荡(无运动)。最后,使用Orcad - PSpice软件设计了一个受耦合惯性神经元系统启发的电子电路,并使用基于Arduino的微控制器进行了实现。PSpice和微控制器的仿真结果证实了理论分析的结果。