Gonzalez Samir Bolivar, Trincado César Vásquez, Rodríguez Karen Patricia Torres, Acosta Lizeth Paola Forero, García Maria Fernanda Perez, Castro Steffy Saavedra, Arroyave Sara Camila Castiblanco, Higuera Gerardo Manríquez, Ariza Luis Antonio Díaz, Ortiz Héctor Rodríguez, Mendoza-Torres Evelyn
Facultad de Química y Farmacia, Grupo de Investigación en Farmacia Asistencial y Farmacología, Universidad del Atlántico, Barranquilla-Colombia.
Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile.
Curr Cardiol Rev. 2025 Apr 18. doi: 10.2174/011573403X372565250331190001.
Cardiovascular diseases (CVD) are the leading cause of death worldwide, creating the need for new therapeutic strategies targeting the pathological processes involved. Mitochondria, which comprise one-third of cardiac cell volume, maybe a potential therapeutic target for CVD. Known primarily for energy production, mitochondria are also involved in other processes including intermediary metabolism, mitophagy, calcium homeostasis, and regulation of cell apoptosis. Mitochondrial function is closely linked to morphology, which is altered through mitochondrial dynamics, including processes such as fission and fusion, which ensure that the energy needs of the cell are met. Recent data indicate that mitochondrial dysfunction is involved in the pathophysiology of several CVDs, including cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and cardiac fibrosis. Furthermore, mitochondrial dysfunction is associated with oxidative stress related to atherosclerosis, hypertension, and pulmonary hypertension. In this review, we first briefly present the physiological mechanisms of mitochondrial function in the heart and then summarize the current knowledge on the impact of mitochondrial dysfunction on CVD. And finally, we highlight the evidence from in vitro, in vivo, and clinical studies of the cardioprotective effects of drugs that preserve mitochondrial function in CVD. It is hoped that this review may provide new insights into the need to discover new pharmacological targets with direct actions on mitochondria that may provide combined therapeutic strategies to optimally treat these pathologies.
心血管疾病(CVD)是全球主要的死亡原因,因此需要针对相关病理过程的新治疗策略。线粒体占心肌细胞体积的三分之一,可能是心血管疾病的一个潜在治疗靶点。线粒体主要以产生能量而闻名,它还参与其他过程,包括中间代谢、线粒体自噬、钙稳态以及细胞凋亡的调节。线粒体功能与形态密切相关,形态通过线粒体动力学改变,包括裂变和融合等过程,这些过程确保细胞的能量需求得到满足。最近的数据表明,线粒体功能障碍参与了几种心血管疾病的病理生理学过程,包括心肌肥大、心力衰竭、缺血/再灌注损伤和心脏纤维化。此外,线粒体功能障碍与动脉粥样硬化、高血压和肺动脉高压相关的氧化应激有关。在本综述中,我们首先简要介绍心脏中线粒体功能的生理机制,然后总结目前关于线粒体功能障碍对心血管疾病影响的知识。最后,我们强调了体外、体内和临床研究中关于药物对心血管疾病中线粒体功能的保护作用的证据。希望本综述能为发现直接作用于线粒体的新药理学靶点提供新的见解,这些靶点可能提供联合治疗策略以最佳地治疗这些疾病。