Department of Molecular Physiology and Biophysics (A.H., K.N.), Vanderbilt University Medical Center, Nashville.
Department of Physiology, Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (S.M.C., N.S.).
Circ Res. 2024 Jul 5;135(2):372-396. doi: 10.1161/CIRCRESAHA.124.323800. Epub 2024 Jul 4.
Despite clinical and scientific advancements, heart failure is the major cause of morbidity and mortality worldwide. Both mitochondrial dysfunction and inflammation contribute to the development and progression of heart failure. Although inflammation is crucial to reparative healing following acute cardiomyocyte injury, chronic inflammation damages the heart, impairs function, and decreases cardiac output. Mitochondria, which comprise one third of cardiomyocyte volume, may prove a potential therapeutic target for heart failure. Known primarily for energy production, mitochondria are also involved in other processes including calcium homeostasis and the regulation of cellular apoptosis. Mitochondrial function is closely related to morphology, which alters through mitochondrial dynamics, thus ensuring that the energy needs of the cell are met. However, in heart failure, changes in substrate use lead to mitochondrial dysfunction and impaired myocyte function. This review discusses mitochondrial and cristae dynamics, including the role of the mitochondria contact site and cristae organizing system complex in mitochondrial ultrastructure changes. Additionally, this review covers the role of mitochondria-endoplasmic reticulum contact sites, mitochondrial communication via nanotunnels, and altered metabolite production during heart failure. We highlight these often-neglected factors and promising clinical mitochondrial targets for heart failure.
尽管在临床和科学上取得了进展,但心力衰竭仍是全球发病率和死亡率的主要原因。线粒体功能障碍和炎症都有助于心力衰竭的发生和发展。虽然炎症对于急性心肌细胞损伤后的修复愈合至关重要,但慢性炎症会损害心脏,影响其功能,并降低心输出量。占心肌细胞体积三分之一的线粒体可能成为心力衰竭的潜在治疗靶点。线粒体主要负责产生能量,但也参与包括钙稳态和细胞凋亡调节在内的其他过程。线粒体功能与形态密切相关,通过线粒体动力学改变来确保细胞的能量需求得到满足。然而,在心力衰竭中,底物利用的变化导致线粒体功能障碍和肌细胞功能受损。本综述讨论了线粒体和嵴动力学,包括线粒体接触位点和嵴组织系统复合物在超微结构改变中的作用。此外,本综述还涵盖了线粒体-内质网接触位点的作用、通过纳米管进行的线粒体通讯以及心力衰竭期间代谢产物产生的改变。我们强调了这些常被忽视的因素以及有前景的心力衰竭临床线粒体治疗靶点。
Circ Res. 2024-7-5
Adv Exp Med Biol. 2017
Circulation. 2019-3-12
Trans Am Clin Climatol Assoc. 2018
Cell Stress Chaperones. 2024-6
Adv Exp Med Biol. 2017
J Cardiovasc Transl Res. 2025-7-25
Hypertension. 2025-7-18
BMC Vet Res. 2025-7-1
J Cell Sci. 2024-1-1
Psychoneuroendocrinology. 2024-2
Medicine (Baltimore). 2023-12-8
Aging Cell. 2024-2