Wei Yuchen, Shi Jingfang, Xie Xueyi, Zhang Feng, Dong Huizhen, Li Yaoyao, Bi Fangcheng, Huang Xiaosan, Dou Tongxin
Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China.
Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, AgroBiological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China.
Plant Sci. 2025 Jul;356:112495. doi: 10.1016/j.plantsci.2025.112495. Epub 2025 Apr 19.
Banana, a globally cultivated fruit, faces significant constraints in distribution and sustainable production due to drought stress. This study investigated drought tolerance in Cavendish bananas using RNA-seq time-course analysis and molecular biology experiments. Plants were subjected to dehydration treatments, and physiological indicators such as electrolyte leakage, proline content, malonaldehyde, peroxidase activity, and hydrogen peroxide content were assessed. RNA-Seq and qRT-PCR were used to analyze transcriptional changes under drought. Weighted gene co-expression network (WGCNA) analysis identified thousands of differentially expressed genes (DEGs) at different time points, with a core set of 2660 DEGs consistently identified. KEGG enrichment analysis revealed MaGME777, a glycolysis/gluconeogenesis gene, as a potential drought resistance regulator. Virus-mediated gene silencing (VIGS) of MaGME777 reduced drought tolerance in bananas. Yeast one-hybrid (Y1H) and luciferase reporter assays demonstrated that the transcription factor MabHLH770 directly binds and activates the MaGME777 promoter. VIGS downregulation of MabHLH770 also reduced drought tolerance. In conclusion, this study revealed that MabHLH770 is a positive regulator of drought stress, by targeting MaGME777 promoter and activating their expression to enhance drought tolerance. These findings provide a foundation for developing drought-resistant banana cultivars through molecular breeding approaches.
香蕉作为一种全球广泛种植的水果,由于干旱胁迫,在其分布和可持续生产上面临重大限制。本研究利用RNA测序时间进程分析和分子生物学实验,对卡文迪什香蕉的耐旱性进行了研究。对植株进行脱水处理,并评估电解质渗漏、脯氨酸含量、丙二醛、过氧化物酶活性和过氧化氢含量等生理指标。利用RNA测序和定量逆转录聚合酶链反应分析干旱条件下的转录变化。加权基因共表达网络(WGCNA)分析在不同时间点鉴定出数千个差异表达基因(DEG),其中一致鉴定出一组核心的2660个DEG。京都基因与基因组百科全书(KEGG)富集分析显示,糖酵解/糖异生基因MaGME777是一种潜在的抗旱调节因子。对MaGME777进行病毒介导的基因沉默(VIGS)降低了香蕉的耐旱性。酵母单杂交(Y1H)和荧光素酶报告基因检测表明,转录因子MabHLH770直接结合并激活MaGME777启动子。对MabHLH770进行VIGS下调也降低了耐旱性。总之,本研究表明,MabHLH770通过靶向MaGME777启动子并激活其表达以增强耐旱性,是干旱胁迫的正调节因子。这些发现为通过分子育种方法培育耐旱香蕉品种奠定了基础。