Dhatchinamoorthy Vinoth, Devarasan Ezhilmaran, Razzaque Asima, Noor Saima
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, India.
Department of Basic science, Preparatory year, King Faisal University Al Ahsa, Al Hofuf, 31982, Saudi Arabia.
Sci Rep. 2025 Apr 21;15(1):13699. doi: 10.1038/s41598-025-93743-6.
In this article, we introduce an innovative methodology for image segmentation utilizing neutrosophic sets. Neutrosophic set components exhibit superior reliability in image processing due to their adeptness at managing uncertainty. The swift proliferation of neutrosophic sets research is attributed to its efficacy in addressing uncertainties in practical scenarios. Effective segmentation requires the resolution of uncertainties. This article's principal aim is to achieve multi-class segmentation through uncertainty analysis. The [Formula: see text] segmentation method pertains to type 1, encompassing truth and falsity membership functions. In this method, multiclass segmentation is possible based on the image intensity values of the neutrosophic membership functions. As a result of this research, the article proposes the finding of image segmentation through the neutrosophic set. An experimental set of biometric iris data will be the main focus of the experiment. The analysis employs real-time iris image data. The image data were sourced from the CASIA V1 iris image database. Noise was introduced into the images for analytical purposes, specifically Gaussian and Poisson noise. The evaluation metrics include the Jaccard, MIOU, precision, recall, F1 score, and accuracy. As a result of the application of this methodology, an impressive segmentation score of 85% was obtained.
在本文中,我们介绍一种利用中智集进行图像分割的创新方法。中智集组件在图像处理中表现出卓越的可靠性,因为它们善于处理不确定性。中智集研究的迅速发展归因于其在解决实际场景中的不确定性方面的有效性。有效的分割需要解决不确定性。本文的主要目的是通过不确定性分析实现多类分割。[公式:见正文]分割方法属于第1类,包括真值和假值隶属函数。在这种方法中,基于中智隶属函数的图像强度值可以进行多类分割。作为这项研究的结果,本文提出通过中智集进行图像分割的发现。一组生物特征虹膜数据的实验将是实验的主要焦点。分析采用实时虹膜图像数据。图像数据来自CASIA V1虹膜图像数据库。为了分析目的,向图像中引入了噪声,具体为高斯噪声和泊松噪声。评估指标包括杰卡德指数、平均交并比、精度、召回率、F1分数和准确率。由于应用了这种方法,获得了令人印象深刻的85%的分割分数。