Suppr超能文献

NeDSeM:基于中智学领域的恶性黑色素瘤图像分割方法

NeDSeM: Neutrosophy Domain-Based Segmentation Method for Malignant Melanoma Images.

作者信息

Bian Xiaofei, Pan Haiwei, Zhang Kejia, Chen Chunling, Liu Peng, Shi Kun

机构信息

Department of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China.

出版信息

Entropy (Basel). 2022 Jun 2;24(6):783. doi: 10.3390/e24060783.

Abstract

Skin lesion segmentation is the first and indispensable step of malignant melanoma recognition and diagnosis. At present, most of the existing skin lesions segmentation techniques often used traditional methods like optimum thresholding, etc., and deep learning methods like U-net, etc. However, the edges of skin lesions in malignant melanoma images are gradually changed in color, and this change is nonlinear. The existing methods can not effectively distinguish banded edges between lesion areas and healthy skin areas well. Aiming at the uncertainty and fuzziness of banded edges, the neutrosophic set theory is used in this paper which is better than fuzzy theory to deal with banded edge segmentation. Therefore, we proposed a neutrosophy domain-based segmentation method that contains six steps. Firstly, an image is converted into three channels and the pixel matrix of each channel is obtained. Secondly, the pixel matrixes are converted into Neutrosophic Set domain by using the neutrosophic set conversion method to express the uncertainty and fuzziness of banded edges of malignant melanoma images. Thirdly, a new Neutrosophic Entropy model is proposed to combine the three memberships according to some rules by using the transformations in the neutrosophic space to comprehensively express three memberships and highlight the banded edges of the images. Fourthly, the feature augment method is established by the difference of three components. Fifthly, the dilation is used on the neutrosophic entropy matrixes to fill in the noise region. Finally, the image that is represented by transformed matrix is segmented by the Hierarchical Gaussian Mixture Model clustering method to obtain the banded edge of the image. Qualitative and quantitative experiments are performed on malignant melanoma image dataset to evaluate the performance of the NeDSeM method. Compared with some state-of-the-art methods, our method has achieved good results in terms of performance and accuracy.

摘要

皮肤病变分割是恶性黑色素瘤识别与诊断的首要且不可或缺的步骤。目前,现有的大多数皮肤病变分割技术通常采用诸如最优阈值法等传统方法,以及诸如U-net等深度学习方法。然而,恶性黑色素瘤图像中皮肤病变的边缘颜色是逐渐变化的,且这种变化是非线性的。现有方法无法很好地有效区分病变区域与健康皮肤区域之间的带状边缘。针对带状边缘的不确定性和模糊性,本文采用了比模糊理论更适合处理带状边缘分割的中智集理论。因此,我们提出了一种基于中智哲学域的分割方法,该方法包含六个步骤。首先,将图像转换为三个通道并获得每个通道的像素矩阵。其次,通过中智集转换方法将像素矩阵转换到中智集域,以表达恶性黑色素瘤图像带状边缘的不确定性和模糊性。第三,提出一种新的中智熵模型,利用中智空间中的变换按照一定规则组合三个隶属度,以综合表达三个隶属度并突出图像的带状边缘。第四,通过三个分量的差异建立特征增强方法。第五,对中智熵矩阵进行膨胀操作以填充噪声区域。最后,采用分层高斯混合模型聚类方法对由变换后的矩阵表示的图像进行分割,以获得图像的带状边缘。对恶性黑色素瘤图像数据集进行了定性和定量实验,以评估NeDSeM方法的性能。与一些现有最先进方法相比,我们的方法在性能和准确性方面取得了良好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a29/9222744/a80aefa65d9d/entropy-24-00783-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验