Suppr超能文献

潮间带微生物岩中的微生物群落变化与氮利用:盐度和pH值在微生物诱导碳酸盐沉淀中的作用

Microbial Community Shifts and Nitrogen Utilization in Peritidal Microbialites: The Role of Salinity and pH in Microbially Induced Carbonate Precipitation.

作者信息

Hsieh Yunli Eric, Yang Sung-Yin, Liu Shao-Lun, Wang Shih-Wei, Wang Wei-Lung, Tang Sen-Lin, Yang Shan-Hua

机构信息

Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.

Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.

出版信息

Microb Ecol. 2025 Apr 22;88(1):31. doi: 10.1007/s00248-025-02532-1.

Abstract

Microbialites have the potential to record environmental changes and act as biosignatures of past geochemical conditions. As such, they could be used as indicators to decipher ancient rock records. Modern microbialites are primarily found in environments where competitors and destructors are absent or where biogeochemical conditions favor their continuous formation. Many previous studies have essentially focused on the role of photosynthetic microbes in controlling pH and carbonate speciation and potentially overlooked alternative non-photosynthetic pathways of carbonate precipitation. Given that microbial activity induces subtle geochemical changes, microbially induced carbonate precipitation (MICP) can involve several mechanisms, from extracellular polymeric substances (EPS), sulfate reduction, anaerobic oxidation of methane, to nitrogen cycling processes, such as ammonification, ureolysis, and denitrification. Moreover, the peritidal zone where temperate microbialites are mostly found today, is under the influence of both freshwater and seawater, arguing for successive biogeochemical processes leading to mineral saturation, and questioning interpretations of fossil records. This study investigates microbialites in three tide pools from the peritidal zone of Fongchueisha, Hengchun, Taiwan, to address the influence of salinity on microbial community composition and carbonate precipitation mechanisms. Microbial samples were collected across varying salinity gradients at multiple time points and analyzed using next-generation sequencing (NGS) of bacterial 16S and eukaryotic 18S rRNA genes. Our results indicate that dominant bacterial groups, including Cyanobacteria and Alphaproteobacteria, were largely influenced by salinity variations, albeit pH exhibited stronger correlation with community composition. Combining our results on geochemistry and taxonomic diversity over time, we inferred a shift in the trophic mode under high salinity conditions, during which the use of urea and amino acids as a nitrogen source outcompetes diazotrophy, ureolysis and ammonification of amino acids reinforcing carbonate precipitation dynamics by triggering an increase in both pH and dissolved inorganic carbon.

摘要

微生物岩有潜力记录环境变化,并作为过去地球化学条件的生物标志。因此,它们可被用作解读古代岩石记录的指标。现代微生物岩主要发现于没有竞争者和破坏者的环境中,或者生物地球化学条件有利于其持续形成的环境中。许多先前的研究主要关注光合微生物在控制pH值和碳酸盐形态方面的作用,可能忽略了碳酸盐沉淀的其他非光合途径。鉴于微生物活动会引起微妙的地球化学变化,微生物诱导的碳酸盐沉淀(MICP)可能涉及多种机制,从胞外聚合物(EPS)、硫酸盐还原、甲烷厌氧氧化到氮循环过程,如氨化作用、尿素分解和反硝化作用。此外,现今大部分温带微生物岩所在的潮间带受到淡水和海水的双重影响,这表明存在导致矿物饱和的连续生物地球化学过程,并对化石记录的解释提出了质疑。本研究调查了台湾恒春枫港溪沙潮间带三个潮池中的微生物岩,以探讨盐度对微生物群落组成和碳酸盐沉淀机制的影响。在多个时间点采集了不同盐度梯度下的微生物样本,并使用细菌16S和真核生物18S rRNA基因的下一代测序(NGS)进行分析。我们的结果表明,包括蓝细菌和α-变形菌在内的优势细菌类群在很大程度上受到盐度变化的影响,尽管pH值与群落组成的相关性更强。结合我们对地球化学和分类多样性随时间变化的结果,我们推断在高盐度条件下营养模式发生了转变,在此期间,以尿素和氨基酸作为氮源的方式胜过了固氮作用,氨基酸的尿素分解和氨化作用通过引发pH值和溶解无机碳的增加,增强了碳酸盐沉淀动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a00c/12011901/45ed9e47871f/248_2025_2532_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验