Hinzke Tjorven, Schlüter Rabea, Mikolasch Annett, Zühlke Daniela, Müller Patrick, Kleditz Robert, Riedel Katharina, Lalk Michael, Becher Dörte, Sheikhany Halah, Schauer Frieder
Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany.
Helmholtz Institute for One Health (HIOH), Helmholtz-Centre for Infection Research (HZI), 17489, Greifswald, Germany.
Environ Sci Pollut Res Int. 2025 Apr;32(19):11981-11995. doi: 10.1007/s11356-025-36393-5. Epub 2025 Apr 21.
As one of the most-consumed drugs worldwide, ibuprofen (IBU) reaches the environment in considerable amounts as environmental pollutant, necessitating studies of its biotransformation as potential removal mechanism. Here, we screened bacteria with known capabilities to degrade aromatic environmental pollutants, belonging to the genera Bacillus, Priestia (formerly also Bacillus), Paenibacillus, Mycobacterium, and Cupriavidus, for their ability to transform ibuprofen. We identified seven transformation products, namely 2-hydroxyibuprofen, carboxyibuprofen, ibuprofen pyranoside, 2-hydroxyibuprofen pyranoside, 4-carboxy-α-methylbenzene-acetic acid, 1-[4-(2-hydroxy-2-methylpropyl)phenyl]ethanone, and 2-hydroxyibuprofenmethyl ester. Based on our screening results, we focused on ibuprofen biotransformation by Priestia megaterium SBUG 518, to identify structures of transformation products, and to shed light on the drug's impact on bacterial physiology. Biotransformation reactions by P. megaterium SBUG 518 involved (A) the hydroxylation of the isobutyl side chain at two positions, and (B) conjugate formation via esterification with a sugar molecule of the carboxylic group of ibuprofen and an ibuprofen hydroxylation product. Glycosylation seems to be a detoxification process, since the ibuprofen conjugate (ibuprofen pyranoside) was considerably less toxic than the parent compound to P. megaterium SBUG 518. Based on proteome profile changes and inhibition assays, cytochrome P450 systems appear to be central for ibuprofen transformation in P. megaterium SBUG 518. The toxic effect of ibuprofen appears to be caused by interference of the drug with different physiological pathways, especially sporulation.
作为全球消费最为广泛的药物之一,布洛芬(IBU)作为环境污染物大量进入环境,因此有必要研究其生物转化作为潜在的去除机制。在此,我们筛选了具有降解芳香族环境污染物已知能力的细菌,这些细菌属于芽孢杆菌属、Priestia(以前也属于芽孢杆菌属)、类芽孢杆菌属、分枝杆菌属和贪铜菌属,以研究它们转化布洛芬的能力。我们鉴定出了七种转化产物,即2-羟基布洛芬、羧基布洛芬、布洛芬吡喃糖苷、2-羟基布洛芬吡喃糖苷、4-羧基-α-甲基苯乙酸、1-[4-(2-羟基-2-甲基丙基)苯基]乙酮和2-羟基布洛芬甲酯。基于我们的筛选结果,我们重点研究了巨大Priestia菌SBUG 518对布洛芬的生物转化,以确定转化产物的结构,并阐明该药物对细菌生理学的影响。巨大Priestia菌SBUG 518的生物转化反应包括(A)异丁基侧链在两个位置的羟基化,以及(B)通过与布洛芬羧基和布洛芬羟基化产物的糖分子酯化形成共轭物。糖基化似乎是一个解毒过程,因为布洛芬共轭物(布洛芬吡喃糖苷)对巨大Priestia菌SBUG 518的毒性远低于母体化合物。基于蛋白质组图谱变化和抑制试验,细胞色素P450系统似乎是巨大Priestia菌SBUG 518中布洛芬转化的核心。布洛芬的毒性作用似乎是由该药物干扰不同的生理途径,尤其是孢子形成引起的。