Suppr超能文献

Temporal Proteomic Profiling of Pheromone-Induced Cell Cycle Re-Entry in Saccharomyces cerevisiae.

作者信息

Parmar Sneha, Zuniga Nathan R, Rossio Valentina, Liu Xinyue, Paulo Joao A

机构信息

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Proteomics. 2025 May;25(9-10):e202400455. doi: 10.1002/pmic.202400455. Epub 2025 Apr 21.

Abstract

The regulation of cell cycle progression in response to environmental cues is essential for cellular adaptation. In Saccharomyces cerevisiae, the BAR1 gene modulates sensitivity to the mating pheromone α-factor, which induces cell cycle arrest in G1. Here, we investigated the dynamic proteomic response in the bar1 deletion strain using a 27-plex experimental design with TMTproD isobaric labeling. Asynchronous bar1Δ cells were treated with α-factor and then released from the pheromone-induced cell cycle arrest in G1. Using higher-order TMTpro sample multiplexing, we generated global temporal profiles of protein abundance associated with recovery from this arrest, with triplicate samples collected at eight time points from 0 to 165 min after washing out the pheromone. We identify specific proteins involved in cell cycle re-entry and in the attenuation of the pheromone signal, providing insights into the regulatory mechanisms of mating response in yeast. This study also contributes significantly to dynamic proteomic analysis of cell cycle progression. We present a versatile approach for investigating complex cellular processes and showcase cell cycle progression following release from pheromone-induced arrest in yeast.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验