Bruhn Dan, Fan Yuzhen, Griffin Kevin L, Cowan-Turner Daniel, Scafaro Andrew P, Møller Ian Max, Atkin Owen K
Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australia.
Physiol Plant. 2025 Mar-Apr;177(2):e70235. doi: 10.1111/ppl.70235.
Rates of leaf respiratory CO-release (R) are important for terrestrial biosphere models that estimate carbon exchange between plants and the atmosphere. Hitherto, models of R have primarily been based on considerations of respiratory energy demand (particularly ATP) for maintenance and growth purposes. Respiratory ATP synthesis is closely tied to the rate of respiratory O-uptake (R), with relative engagement of the alternative oxidase influencing the ATP:O ratio. However, the extent to which respiratory ATP synthesis is coupled to leaf R depends on the respiratory quotient (RQ, mol CO efflux per unit mol O uptake), with models predicting leaf R assuming that the RQ is at unity. Here, we show systematic inter-specific, temporal and temperature-dependent variation in leaf RQ, with values of RQ ranging from 0.51 to 2.2, challenging model assumptions on the RQ. We discuss possible mechanisms underlying the variation in leaf RQ, potential ways forward in terms of new measurement protocols, and perspectives for modelled R. Our analyses highlight a range of outstanding research questions that need to be answered before we can mechanistically model leaf R at various scales.
叶片呼吸性二氧化碳释放速率(R)对于估算植物与大气之间碳交换的陆地生物圈模型很重要。迄今为止,R模型主要基于对维持和生长目的的呼吸能量需求(特别是ATP)的考虑。呼吸性ATP合成与呼吸性氧气摄取速率(R)密切相关,交替氧化酶的相对参与度会影响ATP:O比率。然而,呼吸性ATP合成与叶片R的耦合程度取决于呼吸商(RQ,每单位摩尔氧气摄取的二氧化碳外排摩尔数),预测叶片R的模型假设RQ为1。在此,我们展示了叶片RQ在种间、时间和温度依赖性方面的系统变化,RQ值范围为0.51至2.2,对关于RQ的模型假设提出了挑战。我们讨论了叶片RQ变化背后的可能机制、新测量方案方面的潜在前进方向以及R建模的前景。我们的分析突出了一系列在我们能够在不同尺度上对叶片R进行机制建模之前需要回答的重要研究问题。