Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
Ann Bot. 2023 Oct 4;132(1):133-162. doi: 10.1093/aob/mcad075.
The ATP yield of plant respiration (ATP/hexose unit respired) quantitatively links active heterotrophic processes with substrate consumption. Despite its importance, plant respiratory ATP yield is uncertain. The aim here was to integrate current knowledge of cellular mechanisms with inferences required to fill knowledge gaps to generate a contemporary estimate of respiratory ATP yield and identify important unknowns.
A numerical balance sheet model combining respiratory carbon metabolism and electron transport pathways with uses of the resulting transmembrane electrochemical proton gradient was created and parameterized for healthy, non-photosynthesizing plant cells catabolizing sucrose or starch to produce cytosolic ATP.
Mechanistically, the number of c subunits in the mitochondrial ATP synthase Fo sector c-ring, which is unquantified in plants, affects ATP yield. A value of 10 was (justifiably) used in the model, in which case respiration of sucrose potentially yields about 27.5 ATP/hexose (0.5 ATP/hexose more from starch). Actual ATP yield often will be smaller than its potential due to bypasses of energy-conserving reactions in the respiratory chain, even in unstressed plants. Notably, all else being optimal, if 25 % of respiratory O2 uptake is via the alternative oxidase - a typically observed fraction - ATP yield falls 15 % below its potential.
Plant respiratory ATP yield is smaller than often assumed (certainly less than older textbook values of 36-38 ATP/hexose) leading to underestimation of active-process substrate requirements. This hinders understanding of ecological/evolutionary trade-offs between competing active processes and assessments of crop growth gains possible through bioengineering of processes that consume ATP. Determining the plant mitochondrial ATP synthase c-ring size, the degree of any minimally required (useful) bypasses of energy-conserving reactions in the respiratory chain, and the magnitude of any 'leaks' in the inner mitochondrial membrane are key research needs.
植物呼吸作用的 ATP 产量(呼吸作用消耗的每单位己糖所产生的 ATP)将活跃的异养过程与底物消耗定量联系起来。尽管它很重要,但植物呼吸作用的 ATP 产量并不确定。本研究的目的是将细胞机制的现有知识与填补知识空白所需的推断相结合,以生成植物呼吸作用 ATP 产量的现代估算,并确定重要的未知因素。
创建了一个数值平衡表模型,该模型将呼吸碳代谢和电子传递途径与利用由此产生的跨膜电化学质子梯度相结合,并针对非光合作用植物细胞利用蔗糖或淀粉进行分解代谢以产生细胞质 ATP 进行了参数化。
从机制上讲,在线粒体 ATP 合酶 Fo 亚基 c 环中未量化的 c 亚基数量会影响 ATP 产量。在模型中,使用了 10 这个值(合理地),在这种情况下,蔗糖呼吸作用可能产生约 27.5 个 ATP/己糖(比淀粉多 0.5 个 ATP/己糖)。由于呼吸链中节能反应的旁路,实际的 ATP 产量通常会小于其潜在值,即使在未受压力的植物中也是如此。值得注意的是,在所有其他条件都最佳的情况下,如果 25%的呼吸氧气摄取是通过替代氧化酶进行的(通常观察到的比例),则 ATP 产量会比潜在值下降 15%。
植物呼吸作用的 ATP 产量比通常假设的要小(肯定小于旧教科书上 36-38 个 ATP/己糖的值),导致对活跃过程底物需求的低估。这阻碍了对竞争活跃过程之间生态/进化权衡的理解,也阻碍了对通过生物工程消耗 ATP 的过程进行作物生长增益的评估。确定植物线粒体 ATP 合酶 c 环的大小、呼吸链中节能反应最小(有用)旁路的程度以及线粒体内膜任何“泄漏”的程度是关键的研究需求。