Zhang Yanan, Shan Chi, Chen Zhuo, Wang Shun, Wei Chenhui, Tian Yuanyuan, Jin Xilang, Zhao Yaoxiao, Liu Xiangyu, Wang Yaoyu, Huang Wenhuan
Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
Flexible Energy storage and Interfacial Chemistry Key Laboratory of Shaanxi University, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
Small. 2025 Jun;21(23):e2502407. doi: 10.1002/smll.202502407. Epub 2025 Apr 21.
The development of rapid and stable ion-conductive channels is pivotal for solid-state electrolytes (SSEs) in achieving high-performance lithium metal batteries (LMBs). Covalent organic frameworks (COFs) have emerged as promising Li-ion conductors due to their well-defined channel architecture, facile chemical tunability, and mechanical robustness. However, the limited active sites and restricted segmental motion for Li migration significantly impede their ionic conductivity. Herein, a rational design strategy is presented to construct 3D porous COF frameworks (TP-COF and TB-COF) using linear ditopic monomers connected via C─C and C─N linkages. These COFs, integrated with polymer electrolytes, provide enhanced Li transport pathways and stabilize lithium anodes in LMBs. The TB-COF, featuring larger pore apertures and abundant ─C═N─ active sites, facilitates superior Li conduction (8.89 × 10 S cm) and a high transference number (0.80) by enhancing lithium salt dissolution. LiF/LiN-rich SEI enables uniform Li deposition, enabling PEO-TB-COF SSEs to achieve >1000 h stability at 1 mA cm⁻ while retaining 90% capacity through 800 cycles (0.5 C) in LFP||Li cells. Molecular dynamics simulations and COMSOL Multiphysics modeling reveal that extended Li transport channels and reduced interfacial diffusion barriers are key to enhanced performance.
对于固态电解质(SSEs)而言,开发快速稳定的离子传导通道对于实现高性能锂金属电池(LMBs)至关重要。共价有机框架(COFs)因其明确的通道结构、易于化学调控以及机械稳定性,已成为有前景的锂离子导体。然而,有限的活性位点和Li迁移受限的链段运动显著阻碍了它们的离子电导率。在此,我们提出一种合理的设计策略,使用通过C─C和C─N键连接的线性双位点单体构建三维多孔COF框架(TP-COF和TB-COF)。这些与聚合物电解质集成的COFs提供了增强的Li传输途径,并稳定了LMBs中的锂负极。具有较大孔径和丰富─C═N─活性位点的TB-COF通过增强锂盐溶解促进了优异的Li传导(8.89×10 S cm)和高迁移数(0.80)。富含LiF/LiN的SEI能够实现均匀的Li沉积,使PEO-TB-COF SSEs在1 mA cm⁻下实现>1000 h的稳定性,同时在LFP||Li电池中通过800次循环(0.5 C)保持90%的容量。分子动力学模拟和COMSOL Multiphysics建模表明,扩展的Li传输通道和降低的界面扩散势垒是性能增强的关键。