Li Chen, Wang Dan-Dong, Poon Ho Gerald Siu Hang, Zhang Zhengyang, Huang Jun, Bang Ki-Taek, Lau Chun Yin, Leu Shao-Yuan, Wang Yanming, Kim Yoonseob
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China.
University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
J Am Chem Soc. 2023 Nov 2. doi: 10.1021/jacs.3c06723.
Lithium (Li)-metal batteries (LMBs) possess the highest theoretical energy density among current battery designs and thus have enormous potential for use in energy storage. However, the development of LMBs has been severely hindered by safety concerns arising from dendrite growth and unstable interphases on the Li anode. Covalent organic frameworks (COFs) incorporating either redox-active or anionic moieties on their backbones have high Li-ion (Li) conductivities and mechanical/chemical stabilities, so are promising for solid electrolyte interphases (SEIs) in LMBs. Here, we synthesized anthraquinone-based silicate COFs (AQ-Si-COFs) that contained both redox-active and anionic sites via condensation of tetrahydroxyanthraquinone with silicon dioxide. The nine Li-mediated charge/discharge processes enabled the AQ-Si-COF to demonstrate an ionic conductivity of 9.8 mS cm at room temperature and a single-ion-conductive transference number of 0.92. Computational studies also supported the nine Li mechanism. We used AQ-Si-COF as the solid electrolyte interphase on the Li anode. The LMB cells with a LiCoO cathode attained a maximum reversible capacity of 188 mAh g at 0.25 C during high-voltage operation. Moreover, this LMB cell demonstrated suppressed dendrite growth and stable cyclability, with its capacity decreasing by less than 3% up to 100 cycles. These findings demonstrate the effectiveness of our redox-active and anionic COFs and their practical utility as SEI in LMB.
锂金属电池(LMBs)在当前的电池设计中具有最高的理论能量密度,因此在能量存储方面具有巨大的应用潜力。然而,锂枝晶生长和锂负极上不稳定的界面所引发的安全问题严重阻碍了LMBs的发展。主链上含有氧化还原活性或阴离子部分的共价有机框架(COFs)具有高锂离子(Li)电导率以及机械/化学稳定性,因此在LMBs的固体电解质界面(SEIs)方面具有广阔前景。在此,我们通过四羟基蒽醌与二氧化硅的缩合反应合成了同时含有氧化还原活性位点和阴离子位点的基于蒽醌的硅酸盐COFs(AQ-Si-COFs)。九个锂介导的充放电过程使AQ-Si-COF在室温下展现出9.8 mS cm的离子电导率以及0.92的单离子传导迁移数。计算研究也支持了这九个锂的机制。我们将AQ-Si-COF用作锂负极上的固体电解质界面。具有LiCoO正极的LMB电池在0.25 C的高压操作下实现了188 mAh g的最大可逆容量。此外,这种LMB电池展现出抑制的枝晶生长和稳定的循环性能,在高达100次循环时其容量下降小于3%。这些发现证明了我们的氧化还原活性和阴离子COFs的有效性及其作为LMB中SEI的实际应用价值。