Suppr超能文献

出血性中风手术中自动穿刺轨迹规划的计算框架

A Computational Framework for Automated Puncture Trajectory Planning in Hemorrhagic Stroke Surgery.

作者信息

Ma Ziyue, Yan Feng, Shan Yongzhi, Wang Yaming, Wang Hong

机构信息

Department of Neurosurgery, Capital Medical University Xuanwu Hospital, Beijing, China.

Tianjin Key Laboratory of Neuromodulation and Neurorepair, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

出版信息

Brain Behav. 2025 Apr;15(4):e70480. doi: 10.1002/brb3.70480.

Abstract

BACKGROUND

The treatment surgery for hemorrhagic stroke typically involves a puncture drainage procedure to remove the hematoma. However, the puncture targets for puncture and the puncture trajectory significantly influence the therapeutic outcome. This study proposes a computational framework integrating artificial intelligence (AI)-driven segmentation, principal component analysis (PCA), and empirical optimization to automate puncture path generation.

METHODS

A software platform named Puncture Trajectory ToolKits (PTK) was developed using C++/Python with ITK/VTK libraries. Key innovations include hybrid segmentation that combines ResNet-50 deep learning and adaptive thresholding for robust hematoma detection. PCA-based longest axis extraction was enhanced by Laplacian mesh smoothing. Skull quadrant theory and safety corridor modeling were used to avoid critical structures. Five complex clinical cases were used to validate the framework's performance.

RESULTS

The framework demonstrated high accuracy in puncture trajectory planning, with the optimized L2 path achieving a mean surgeon satisfaction score of 4.4/5 (Likert scale) compared to manual methods. The average angle difference between automatically generated and manually designed paths was 16.36°. These results highlight PTK's potential to enhance the efficiency and safety of robotic-assisted neurosurgery.

CONCLUSION

PTK establishes a systematic pipeline for trajectory planning assistance, demonstrating technical superiority over conventional methods. The high acceptance rate among surgeons and improved planning efficiency underscore its clinical applicability. Future integration with robotic systems and validation through clinical trials are warranted.

摘要

背景

出血性中风的治疗手术通常包括穿刺引流血肿的操作。然而,穿刺靶点和穿刺轨迹对治疗效果有显著影响。本研究提出了一个集成人工智能(AI)驱动的分割、主成分分析(PCA)和经验优化的计算框架,以实现穿刺路径生成的自动化。

方法

使用C++/Python和ITK/VTK库开发了一个名为穿刺轨迹工具包(PTK)的软件平台。关键创新包括将ResNet-50深度学习与自适应阈值相结合的混合分割,用于可靠的血肿检测。基于PCA的最长轴提取通过拉普拉斯网格平滑得到增强。采用颅骨象限理论和安全走廊建模来避开关键结构。使用五个复杂的临床病例来验证该框架的性能。

结果

该框架在穿刺轨迹规划中显示出高准确性,与手动方法相比,优化后的L2路径获得的外科医生满意度平均评分为4.4/5(李克特量表)。自动生成的路径与手动设计的路径之间的平均角度差为16.36°。这些结果突出了PTK在提高机器人辅助神经外科手术效率和安全性方面的潜力。

结论

PTK建立了一个用于轨迹规划辅助的系统流程,显示出优于传统方法的技术优势。外科医生的高接受率和提高的规划效率强调了其临床适用性。未来与机器人系统的集成以及通过临床试验进行验证是有必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/765e/12012241/3e78051d3be6/BRB3-15-e70480-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验