Zhang Tao, Li Jiabiao, Ding Weiwei, Kong Fansheng, Fang Yinxia, Niu Xiongwei, Jiang Jie, Yu Zhiteng, Tan Pingchuan, Shen Zhongyan, Yang Chunguo, Sun Qiuci, Lu Zhezhe, Yang Bo, Liu Yanan, Wang Yejian, Zhao Yunsheng
State Key Laboratory of Submarine Geoscience, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
Natl Sci Rev. 2025 Feb 28;12(5):nwaf077. doi: 10.1093/nsr/nwaf077. eCollection 2025 May.
It is well known that ultraslow-spreading mid-ocean ridges display significant variations in axial magmatism and tectonics. Yet, the processes governing mantle melting and melt transport remain a subject of ongoing debate. A key limitation has been the lack of contrasting observations of mantle melting beneath axial segment centers versus segment ends, particularly through electromagnetic methods, which are highly sensitive to partial molten mantle. Here, we present the first one-dimensional magnetotelluric observation conducted along the ultraslow-spreading Gakkel Ridge in the Arctic Ocean. Our findings reveal prominent low-resistivity zones at depths of 20-45 km beneath segment centers, which are indicative of shallow melting zones. We propose that the robust magma supply and associated repeated magma intrusions lead to a thin thermal lithosphere and associated shallow mantle melting. In contrast, such electrical resistivity anomalies are absent at comparable depths beneath the magma-poor deep valley, where the electrical lithosphere extends to depths of >50 km. The extremely thick lithosphere restricts mantle melting to greater depths and facilitates melt migration toward adjacent segment centers. Our study highlights the critical role of highly variable lithospheric thickness in regulating melting depth and focusing melt flow along ultraslow-spreading ridges. We propose that the significant variation in lithospheric thickness and the associated focused melting result in the recently observed highly variable crustal thickness along the Gakkel Ridge.
众所周知,超慢速扩张的大洋中脊在轴向岩浆作用和构造方面表现出显著变化。然而,控制地幔熔融和熔体运移的过程仍然是一个持续争论的话题。一个关键限制是缺乏对轴向段中心与段端下地幔熔融的对比观测,特别是通过对部分熔融地幔高度敏感的电磁方法。在此,我们展示了沿北冰洋超慢速扩张的加克尔脊进行的首次一维大地电磁观测。我们的发现揭示了在段中心下方20 - 45千米深度处有显著的低电阻率带,这表明存在浅部熔融带。我们提出,强大的岩浆供应和相关的反复岩浆侵入导致了薄的热岩石圈以及相关的浅部地幔熔融。相比之下,在贫岩浆的深谷下方相当深度处不存在这种电阻率异常,那里的电岩石圈延伸到大于50千米的深度。极其厚的岩石圈将地幔熔融限制在更大深度,并促进熔体向相邻段中心迁移。我们的研究强调了高度可变的岩石圈厚度在调节熔融深度和沿超慢速扩张脊聚焦熔体流动方面的关键作用。我们提出,岩石圈厚度的显著变化以及相关的聚焦熔融导致了最近在加克尔脊观测到的高度可变的地壳厚度。