Thöni Anna C M, Robinson William E, Bachrach Yoram, Huck Wilhelm T S, Kachman Tal
Donders Centre for Cognition, Radboud University, Nijmegen 9103 6500 HD, The Netherlands.
Institute for Molecules and Materials, Radboud University, Nijmegen 9010 6500 GL, The Netherlands.
J Chem Inf Model. 2025 May 12;65(9):4346-4352. doi: 10.1021/acs.jcim.5c00296. Epub 2025 Apr 22.
In chemical reaction network theory, ordinary differential equations are used to model the temporal change of chemical species concentration. As the functional form of these ordinary differential equation systems is derived from an empirical model of the reaction network, it may be incomplete. Our approach aims to elucidate these hidden insights in the reaction network by combining dynamic modeling with deep learning in the form of neural ordinary differential equations. Our contributions not only help to identify the shortcomings of existing empirical models but also assist the design of future reaction networks.
在化学反应网络理论中,常微分方程用于模拟化学物质浓度随时间的变化。由于这些常微分方程系统的函数形式是从反应网络的经验模型推导而来的,所以可能并不完整。我们的方法旨在通过将动态建模与神经网络常微分方程形式的深度学习相结合,来阐明反应网络中这些隐藏的见解。我们的贡献不仅有助于识别现有经验模型的缺点,还能辅助未来反应网络的设计。