Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
Seminar für Angewandte Mathematik, ETH Zürich, Zürich, Switzerland.
PLoS Comput Biol. 2021 Dec 8;17(12):e1009623. doi: 10.1371/journal.pcbi.1009623. eCollection 2021 Dec.
Stochastic models of biomolecular reaction networks are commonly employed in systems and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. For such models, the Kolmogorov's forward equation is called the chemical master equation (CME), and it is a fundamental system of linear ordinary differential equations (ODEs) that describes the evolution of the probability distribution of the random state-vector representing the copy-numbers of all the reacting species. The size of this system is given by the number of states that are accessible by the chemical system, and for most examples of interest this number is either very large or infinite. Moreover, approximations that reduce the size of the system by retaining only a finite number of important chemical states (e.g. those with non-negligible probability) result in high-dimensional ODE systems, even when the number of reacting species is small. Consequently, accurate numerical solution of the CME is very challenging, despite the linear nature of the underlying ODEs. One often resorts to estimating the solutions via computationally intensive stochastic simulations. The goal of the present paper is to develop a novel deep-learning approach for computing solution statistics of high-dimensional CMEs by reformulating the stochastic dynamics using Kolmogorov's backward equation. The proposed method leverages superior approximation properties of Deep Neural Networks (DNNs) to reliably estimate expectations under the CME solution for several user-defined functions of the state-vector. This method is algorithmically based on reinforcement learning and it only requires a moderate number of stochastic simulations (in comparison to typical simulation-based approaches) to train the "policy function". This allows not just the numerical approximation of various expectations for the CME solution but also of its sensitivities with respect to all the reaction network parameters (e.g. rate constants). We provide four examples to illustrate our methodology and provide several directions for future research.
生物分子反应网络的随机模型通常被用于系统和合成生物学中,以研究由涉及低拷贝数物种的反应引起的随机波动的影响。对于这样的模型,柯尔莫哥洛夫的正向方程被称为化学主方程(CME),它是一个基本的线性常微分方程组(ODE),描述了代表所有反应物种拷贝数的随机状态向量的概率分布的演化。该系统的大小由化学系统可达到的状态数决定,对于大多数感兴趣的例子,这个数要么非常大,要么是无限的。此外,通过仅保留少数重要的化学状态(例如具有不可忽略概率的那些状态)来缩小系统规模的近似方法会导致高维 ODE 系统,即使反应物种的数量很小。因此,尽管底层 ODE 具有线性性质,但 CME 的精确数值求解仍然非常具有挑战性。人们通常求助于通过计算密集型随机模拟来估计解。本文的目的是通过使用柯尔莫哥洛夫的反向方程来重新表述随机动力学,开发一种新的深度学习方法来计算高维 CME 的解统计信息。所提出的方法利用深度神经网络(DNN)的优越逼近性质,通过几个用户定义的状态向量函数,可靠地估计 CME 解下的期望。该方法基于强化学习,仅需要少量的随机模拟(与典型的基于模拟的方法相比)来训练“策略函数”。这不仅允许对 CME 解的各种期望进行数值逼近,还可以对其相对于所有反应网络参数(例如速率常数)的敏感性进行数值逼近。我们提供了四个示例来说明我们的方法,并为未来的研究提供了几个方向。