Suppr超能文献

RIF1独立于与核纤层相关的核组织调控小鼠早期胚胎中的复制时间。

RIF1 controls replication timing in early mouse embryos independently of lamina-associated nuclear organization.

作者信息

Nakatani Tsunetoshi, Schauer Tamas, Pal Mrinmoy, Ettinger Andreas, Altamirano-Pacheco Luis, Zorn Julia, Gilbert David M, Torres-Padilla Maria-Elena

机构信息

Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, 81377 München, Germany.

Core Facility Laboratory Animal Services, Helmholtz Zentrum München, 81377 München, Germany.

出版信息

Dev Cell. 2025 Apr 16. doi: 10.1016/j.devcel.2025.03.016.

Abstract

Cells must duplicate their genome before they divide to ensure equal transmission of genetic information. The genome is replicated with a defined temporal order, replication timing (RT), which is cell-type specific and linked to 3D-genome organization. During mammalian development, RT is initially not well defined and becomes progressively consolidated from the 4-cell stage. However, the molecular regulators are unknown. Here, by combining loss-of-function analysis with genome-wide investigation of RT in mouse embryos, we identify Rap1 interacting factor 1 (RIF1) as a regulator of the progressive consolidation of RT. Embryos without RIF1 show DNA replication features of an early, more totipotent state. RIF1 regulates the progressive stratification of RT values and its depletion leads to global RT changes and a more heterogeneous RT program. Developmental RT changes are disentangled from changes in transcription and nuclear organization, specifically nuclear lamina association. Our work provides molecular understanding of replication and genome organization at the beginning of mammalian development.

摘要

细胞在分裂之前必须复制其基因组,以确保遗传信息的平等传递。基因组按照特定的时间顺序进行复制,即复制时间(RT),它具有细胞类型特异性,并与三维基因组组织相关联。在哺乳动物发育过程中,RT最初并不明确,从4细胞阶段开始逐渐巩固。然而,其分子调节因子尚不清楚。在这里,通过将功能丧失分析与对小鼠胚胎RT的全基因组研究相结合,我们确定Rap1相互作用因子1(RIF1)是RT逐渐巩固的调节因子。没有RIF1的胚胎表现出早期、更具全能性状态的DNA复制特征。RIF1调节RT值的逐渐分层,其缺失会导致全局RT变化和更异质的RT程序。发育过程中的RT变化与转录和核组织(特别是核纤层关联)的变化无关。我们的工作为哺乳动物发育初期的复制和基因组组织提供了分子层面的理解。

相似文献

本文引用的文献

1
Cellpose3: one-click image restoration for improved cellular segmentation.
Nat Methods. 2025 Mar;22(3):592-599. doi: 10.1038/s41592-025-02595-5. Epub 2025 Feb 12.
2
Sex-specific DNA-replication in the early mammalian embryo.
Nat Commun. 2024 Jul 27;15(1):6323. doi: 10.1038/s41467-024-50727-w.
4
Emergence of replication timing during early mammalian development.
Nature. 2024 Jan;625(7994):401-409. doi: 10.1038/s41586-023-06872-1. Epub 2023 Dec 20.
5
RIF1 regulates early replication timing in murine B cells.
Nat Commun. 2023 Dec 11;14(1):8049. doi: 10.1038/s41467-023-43778-y.
6
Reorganization of lamina-associated domains in early mouse embryos is regulated by RNA polymerase II activity.
Genes Dev. 2023 Oct 1;37(19-20):901-912. doi: 10.1101/gad.350799.123. Epub 2023 Nov 1.
7
Three-dimensional nuclear organisation and the DNA replication timing program.
Curr Opin Struct Biol. 2023 Dec;83:102704. doi: 10.1016/j.sbi.2023.102704. Epub 2023 Sep 21.
8
Rif1 Regulates Self-Renewal and Impedes Mesendodermal Differentiation of Mouse Embryonic Stem Cells.
Stem Cell Rev Rep. 2023 Jul;19(5):1540-1553. doi: 10.1007/s12015-023-10525-1. Epub 2023 Mar 27.
9
Proteomic profiling reveals distinct phases to the restoration of chromatin following DNA replication.
Cell Rep. 2023 Jan 31;42(1):111996. doi: 10.1016/j.celrep.2023.111996. Epub 2023 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验