Suppr超能文献

乳腺浸润性微乳头状癌术前淋巴结转移风险评估:基于机器学习的预测模型及网络计算器的开发

Preoperative lymph node metastasis risk assessment in invasive micropapillary carcinoma of the breast: development of a machine learning-based predictive model with a web-based calculator.

作者信息

Zhang Yan, Wang Nan, Qiu Yuxin, Jiang Yingxiao, Qin Peiyan, Wang Xiaoxiao, Li Yang, Meng Xiangdi, Hao Furong

机构信息

School of Clinical Medicine, Shandong Second Medical University, Weifang, China.

Department of Radiation Oncology, Weifang People's Hospital, Weifang, China.

出版信息

World J Surg Oncol. 2025 Apr 22;23(1):154. doi: 10.1186/s12957-025-03807-0.

Abstract

BACKGROUND

Invasive micropapillary carcinoma (IMPC) is a rare subtype of breast cancer characterized by a high risk of lymph node metastasis (LNM). The study aimed to identify predictors of LNM and to develop a machine learning (ML)-based risk prediction model for patients with breast IMPC.

METHODS

We retrospectively analyzed a cohort of 229 patients diagnosed with breast IMPC between 2019 and 2021. Patients were randomly assigned to training and test sets in a 7:3 ratio. Independent risk factors for LNM were identified using univariable and multivariable logistic regression analyses. Thirteen ML algorithms were trained and compared to determine the optimal model. Model performance was evaluated using the area under the curve (AUC), calibration plots, and decision curve analysis. Internal validation was performed using 100 iterations of tenfold cross-validation.

RESULTS

LNM was present in 158 patients (69%). Tumor size, histological grade, progesterone receptor staining intensity, and lymphovascular invasion were identified as independent predictors of LNM (all p < 0.05). Among the 13 ML models, logistic regression (LR) demonstrated the best performance, achieving an AUC of 0.88 in the test set. A nomogram based on the LR model was constructed to facilitate clinical application, showing excellent calibration, clinical utility, and a classification accuracy of 76% (95% confidence interval: 70%-82%). The median AUC across cross-validation iterations was 0.83 (interquartile range: 0.76-0.91).

CONCLUSIONS

This study identified key predictors of LNM in breast IMPC and developed a well-calibrated nomogram to support individualized treatment decision-making.

摘要

背景

浸润性微乳头状癌(IMPC)是一种罕见的乳腺癌亚型,其特征是淋巴结转移(LNM)风险高。本研究旨在确定LNM的预测因素,并为乳腺IMPC患者开发一种基于机器学习(ML)的风险预测模型。

方法

我们回顾性分析了2019年至2021年间诊断为乳腺IMPC的229例患者队列。患者以7:3的比例随机分配到训练集和测试集。使用单变量和多变量逻辑回归分析确定LNM的独立危险因素。训练并比较了13种ML算法以确定最佳模型。使用曲线下面积(AUC)、校准图和决策曲线分析评估模型性能。使用十折交叉验证的100次迭代进行内部验证。

结果

158例患者(69%)存在LNM。肿瘤大小、组织学分级、孕激素受体染色强度和淋巴管浸润被确定为LNM的独立预测因素(所有p<0.05)。在13种ML模型中,逻辑回归(LR)表现最佳,在测试集中AUC达到0.88。构建了基于LR模型的列线图以促进临床应用,显示出良好的校准、临床实用性和76%的分类准确率(95%置信区间:70%-82%)。交叉验证迭代的中位数AUC为0.83(四分位间距:0.76-0.91)。

结论

本研究确定了乳腺IMPC中LNM的关键预测因素,并开发了一个校准良好的列线图以支持个体化治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f41b/12013222/0f96264c7ee5/12957_2025_3807_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验