Suppr超能文献

野生蜜蜂的栖息地:鸟类可提升蜜蜂丰富度指标。

Where the wild bees are: Birds improve indicators of bee richness.

作者信息

Rousseau Josée S, Johnston Alison, Rodewald Amanda D

机构信息

Cornell Lab of Ornithology, Ithaca, New York, United States of America.

Centre for Research into Ecological and Environmental Modelling, School of Mathematics and Statistics, University of St. Andrews, St Andrews, United Kingdom.

出版信息

PLoS One. 2025 Apr 23;20(4):e0321496. doi: 10.1371/journal.pone.0321496. eCollection 2025.

Abstract

Widespread declines in wild bee populations necessitate urgent action, but insufficient data exist to guide conservation efforts. Addressing this data deficit, we investigated the relative performance of environmental and/or taxon-based indicators to predict wild bee richness in the eastern and central U.S. Our methodology leveraged publicly available data on bees (SCAN and GBIF data repositories), birds (eBird participatory science project) and land cover data (USDA Cropland Data Layer). We used a Bayesian variable selection algorithm to select variables that best predicted species richness of bees using two datasets: a semi-structured dataset covering a wide geographical and temporal range and a structured dataset covering a focused extent with a standardized protocol. We demonstrate that birds add value to land cover data as indicators of wild bee species richness across broad geographies, particularly when using semi-structured data. These improvements likely stem from the demonstrated sensitivity of birds to conditions thought to impact bees but that are missed by remotely sensed environmental data. Importantly, this enables estimation of bee richness in places that don't have direct observations of bees. In the case of wild bees specifically, we suggest that bird and land cover data, when combined, serve as useful indicators to guide monitoring and conservation priorities until the quality and quantity of bee data improve.

摘要

野生蜜蜂种群的广泛减少需要采取紧急行动,但目前的数据不足以指导保护工作。为了解决这一数据缺口,我们调查了基于环境和/或分类群的指标在美国东部和中部预测野生蜜蜂丰富度的相对表现。我们的方法利用了关于蜜蜂(SCAN和GBIF数据存储库)、鸟类(eBird参与式科学项目)和土地覆盖数据(美国农业部农田数据层)的公开可用数据。我们使用贝叶斯变量选择算法,通过两个数据集选择最能预测蜜蜂物种丰富度的变量:一个涵盖广泛地理和时间范围的半结构化数据集,以及一个通过标准化协议覆盖特定范围的结构化数据集。我们证明,鸟类作为广泛地理区域内野生蜜蜂物种丰富度的指标,为土地覆盖数据增添了价值,特别是在使用半结构化数据时。这些改进可能源于鸟类对被认为会影响蜜蜂但被遥感环境数据遗漏的条件的敏感性。重要的是,这使得在没有直接观察到蜜蜂的地方也能估计蜜蜂的丰富度。特别是对于野生蜜蜂而言,我们建议在蜜蜂数据的质量和数量提高之前,鸟类和土地覆盖数据相结合可作为有用的指标,以指导监测和保护重点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8580/12017907/de5840cdd858/pone.0321496.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验