Chang Jia-Nan, Yang Kun, Wang Li-Na, Wang Jin, Lan Ya-Qian, Wang Chen
State Key Laboratory of Microbial Technology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Basic Research Center for Synthetic Biology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, China.
Angew Chem Int Ed Engl. 2025 Apr 23:e202502591. doi: 10.1002/anie.202502591.
Efficient applications of nanofluidic devices are often limited by the insufficient ion permselectivity and inherent ion concentration polarization (ICP) phenomenon. In this work, a bio-inspired plasmonic ion diode membrane (PIDM) was designed and fabricated for enhanced ion transport and osmotic energy harvesting by integrating covalent organic frameworks (COFs) and three-dimensional Au nanoparticles (3D AuNPs) into anode aluminum oxide (AAO). Under light irradiation, localized surface plasmon resonance (LSPR) excitation of 3D AuNPs can release huge plasmonic heat and produce abundant hot charge carriers (hot electrons and holes) simultaneously. The former heats the solution and generates a thermal gradient for boosting ion flux, while the latter transfers to the COFs layer, increasing charge density for promoting ion permselectivity. Importantly, it has been found that different COFs with varied pore sizes and charges have an obvious influence on energy harvesting efficiency. Under the optimum condition, a high output power density of 65.7 W m in a 500-fold concentration gradient could be achieved. This work provides a practical and efficient way to boost ion transport and enhance osmotic energy conversion by utilizing the synergistic effect of plasmonics and ion diode (ID) property.
纳米流体装置的高效应用常常受到离子渗透选择性不足和固有离子浓度极化(ICP)现象的限制。在这项工作中,通过将共价有机框架(COF)和三维金纳米颗粒(3D AuNP)集成到阳极氧化铝(AAO)中,设计并制造了一种受生物启发的等离子体离子二极管膜(PIDM),用于增强离子传输和渗透能收集。在光照射下,3D AuNP的局域表面等离子体共振(LSPR)激发可释放巨大的等离子体热并同时产生大量的热载流子(热电子和空穴)。前者加热溶液并产生热梯度以提高离子通量,而后者转移到COF层,增加电荷密度以提高离子渗透选择性。重要的是,已发现具有不同孔径和电荷的不同COF对能量收集效率有明显影响。在最佳条件下,在500倍浓度梯度下可实现65.7 W/m的高输出功率密度。这项工作提供了一种实用且高效的方法,通过利用等离子体和离子二极管(ID)特性的协同效应来促进离子传输并增强渗透能转换。