Suppr超能文献

位点特异性结构和稳定性受限替代模型改进了系统发育推断。

Site-specific structure and stability constrained substitution models improve phylogenetic inference.

作者信息

Lorca-Alonso Ivan, Fernando Otero-de-Navascues, Arenas Miguel, Bastolla Ugo

机构信息

Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM Cantoblanco, 28049 Madrid, Spain.

CINBIO, University of Vigo, 36310 Vigo, Spain.

出版信息

Syst Biol. 2025 Apr 22. doi: 10.1093/sysbio/syaf007.

Abstract

In previous studies, we presented our site-specific Stability Constrained substitution models of Protein Evolution (Stab-CPE) that define fitness as the probability of finding a protein folded in its native state but ignore changes in the native structure. Stab-CPE models can be used to predict a more realistic evolutionary variability across protein sites, nevertheless they still qualitatively differ from observed data and appear too tolerant to mutations. Here we present novel structurally constrained substitution models (Str-CPE) that define fitness based on the structural deformation produced by a mutation, which we predict adopting an extension of Juli'an Echaveás linearly forced elastic network model. Compared to our previous Stab-CPE models, the novel Str-CPE models are more stringent (they predict lower sequence entropy and substitution rate), provide higher likelihood to multiple sequence alignments (MSAs) that include one or more known structures, and better predict the observed conservation across sites. The models that combine Str-CPE and Stab-CPE models are even more stringent and fit the empirical MSAs better. We collectively refer to our models as Structure and Stability Constrained substitution models of Protein Evolution (SSCPE). When using distantly-related proteins, we find that more similar phylogenies are inferred under the SSCPE models than under traditional empirical substitution models if compared to the corresponding reference phylogenies inferred using structural distances. Therefore, SSCPE models seem to be much better-fitting substitution models for deep phylogeny inference. The SSCPE models have been implemented in the PERL-based program SSCPE.pl, which uses RAxML-NG to infer phylogenies under the SSCPE model given a concatenated MSA and a list of protein structures that match the sequences in the MSA.

摘要

在之前的研究中,我们提出了蛋白质进化的位点特异性稳定性约束替代模型(Stab-CPE),该模型将适应性定义为找到处于天然状态折叠的蛋白质的概率,但忽略了天然结构的变化。Stab-CPE模型可用于预测蛋白质位点间更现实的进化变异性,然而它们在质量上仍与观测数据不同,并且似乎对突变过于宽容。在此,我们提出了新的结构约束替代模型(Str-CPE),该模型基于突变产生的结构变形来定义适应性,我们通过扩展胡利安·埃查韦的线性强迫弹性网络模型来进行预测。与我们之前的Stab-CPE模型相比,新的Str-CPE模型更为严格(它们预测的序列熵和替代率更低),为包含一个或多个已知结构的多序列比对(MSA)提供了更高的似然性,并且能更好地预测位点间的观测保守性。结合Str-CPE和Stab-CPE模型的模型甚至更严格,并且能更好地拟合经验MSA。我们将这些模型统称为蛋白质进化的结构与稳定性约束替代模型(SSCPE)。当使用远缘相关蛋白质时,我们发现与使用结构距离推断的相应参考系统发育相比,如果与传统经验替代模型相比,在SSCPE模型下推断出的系统发育更为相似。因此,SSCPE模型似乎是用于深度系统发育推断的更合适的替代模型。SSCPE模型已在基于PERL的程序SSCPE.pl中实现,该程序使用RAxML-NG在给定串联MSA和与MSA中序列匹配的蛋白质结构列表的情况下,在SSCPE模型下推断系统发育。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验