Artz Oliver, White James R, Rousseau Benoit, Argiles Guillem, Foote Michael B, Johannet Paul, Patel Miteshkumar, Abdelfattah Somer, Patel Shrey, Wilde Callahan, Mieles David, Diaz Luis A
Di vision of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York City, NY 10065, United States.
Resphera Biosciences, Baltimore, MD 21231, United States.
NAR Cancer. 2025 Apr 23;7(2):zcaf014. doi: 10.1093/narcan/zcaf014. eCollection 2025 Jun.
N-methyladenosine (mA) is the most abundant internal RNA modification in eukaryotes and plays a key role in cellular growth and development. Global changes in cellular methylated RNA and mA-mediated transcript regulation significantly impact oncogenesis. Here, we investigate how recurrent synonymous and non-synonymous somatic mutations abolishing individual canonical methylated mA motifs affect transcript levels and survival of patients with cancer. Moreover, we explore the effect of these mutations on creating mA motifs. To this end, we compared publicly available data on mA sites with mutations reported in The Cancer Genome Atlas (TCGA). We find that mutations disrupting or creating mA motifs display a low recurrence and have a negligible impact on RNA abundance. Patients with the highest number of disrupted mA sites or newly generated mA motifs did not generally exhibit alterations in mortality risk or outcomes. Hence, our data suggest that mutational alterations in the mA motif landscape are unlikely to be a primary mechanism for regulating gene function across most cancer types. This may be attributed to the fact that mutations typically affect individual mA sites, which is likely insufficient to significantly impact gene expression.
N6-甲基腺苷(m6A)是真核生物中最丰富的内部RNA修饰,在细胞生长和发育中起关键作用。细胞甲基化RNA的整体变化和m6A介导的转录调控对肿瘤发生有显著影响。在此,我们研究了消除单个典型甲基化m6A基序的反复出现的同义突变和非同义体细胞突变如何影响癌症患者的转录水平和生存。此外,我们还探讨了这些突变对创建m6A基序的影响。为此,我们将公开的m6A位点数据与癌症基因组图谱(TCGA)中报告的突变进行了比较。我们发现,破坏或创建m6A基序的突变发生率较低,对RNA丰度的影响可忽略不计。具有最高数量的m6A位点破坏或新生成的m6A基序的患者,其死亡风险或预后通常未表现出改变。因此,我们的数据表明,在大多数癌症类型中,m6A基序格局的突变改变不太可能是调节基因功能的主要机制。这可能归因于这样一个事实,即突变通常影响单个m6A位点,这可能不足以显著影响基因表达。