Schmidt Julia, Haave Marte, Wang Wei
Department of Chemistry, University of Bergen 5007 Bergen Norway
SALT Lofoten AS 8301 Svolvær Norway.
RSC Adv. 2025 Apr 23;15(17):13041-13052. doi: 10.1039/d5ra01174d. eCollection 2025 Apr 22.
Quantitative nuclear magnetic resonance (qNMR) spectroscopy could potentially be used for environmental microplastic analyses, provided the challenges posed by mixed polymer samples with varying concentrations and overlapping signals are understood. This study investigates the feasibility of qNMR as a reliable and cost-efficient method for quantifying synthetic polymers in mixtures of low and varying concentrations, addressing key challenges and limitations. Polymer mixtures were analysed using deuterated chloroform (CDCl) and deuterated tetrahydrofuran (THF-d) as solvents, with polystyrene (PS), polybutadiene-cis (PB), polyisoprene-cis (PI), polyvinyl chloride (PVC), polyurethane (PU), and polylactic acid (PLA) as selected polymers. Mixtures contained either low and high concentrations of each polymer or equal concentrations of all six polymers. Polymer concentrations were measured using the internal standard method. The method showed low relative errors for low concentrations of PS in CDCl and PVC in THF-d, with values of -5% and 0%, respectively, while PB and PI in CDCl show relative errors of +5% and -3%, respectively. We observe significant linearity between nominal and measured concentrations with values ranging from 0.9655 to 0.9981, except for PU, which had high relative errors and poor linearity ( = 0.9548). Moreover, simultaneous quantification of six polymers in THF-d proves effective at intermediate concentrations. However, overlapping proton signals are observed, causing high-concentration polymers to mask low-concentration ones. While this study demonstrates low limit of quantification (LOQ) and advances in simultaneous polymer quantification, further research is needed to improve qNMR accuracy for mixed polymer samples and environmentally relevant concentrations.
定量核磁共振(qNMR)光谱法有潜力用于环境微塑料分析,前提是要理解混合聚合物样品中不同浓度和重叠信号所带来的挑战。本研究调查了qNMR作为一种可靠且经济高效的方法来定量低浓度且浓度各异的混合物中合成聚合物的可行性,解决了关键挑战和局限性。使用氘代氯仿(CDCl)和氘代四氢呋喃(THF-d)作为溶剂分析聚合物混合物,选择聚苯乙烯(PS)、顺式聚丁二烯(PB)、顺式聚异戊二烯(PI)、聚氯乙烯(PVC)、聚氨酯(PU)和聚乳酸(PLA)作为聚合物。混合物包含每种聚合物的低浓度和高浓度,或者所有六种聚合物的等浓度。使用内标法测量聚合物浓度。该方法对于CDCl中低浓度的PS和THF-d中低浓度的PVC显示出较低的相对误差,分别为-5%和0%,而CDCl中的PB和PI的相对误差分别为+5%和-3%。我们观察到标称浓度和测量浓度之间具有显著的线性关系,相关系数值在0.9655至0.9981之间,除了PU,其具有较高的相对误差和较差的线性关系(相关系数 = 0.9548)。此外,在THF-d中同时定量六种聚合物在中等浓度下证明是有效的。然而,观察到质子信号重叠,导致高浓度聚合物掩盖低浓度聚合物。虽然本研究展示了低定量限(LOQ)以及在聚合物同时定量方面的进展,但仍需要进一步研究以提高qNMR对混合聚合物样品和环境相关浓度的准确性。