Awd Mustafa, Walther Frank
Institute for Informatics and Automation (IIA), Bremen City University of Applied Sciences (HSB), Flughafenallee 10, D-28199 Bremen, Germany.
Testia GmbH, Airbus Group, Cornelius-Edzard-Straße 15, D-28199 Bremen, Germany.
Materials (Basel). 2025 Mar 26;18(7):1472. doi: 10.3390/ma18071472.
Integrating machine learning into additive manufacturing offers transformative opportunities to optimize material properties and design high-performance, fatigue-resistant structures for critical applications in aerospace, biomedical, and structural engineering. This study explores mechanistic machine learning techniques to tailor microstructural features, leveraging data from ultrasonic fatigue tests where very high cycle fatigue properties were assessed up to 1×1010 cycles. Machine learning models predicted critical fatigue thresholds, optimized process parameters, and reduced design iteration cycles by over 50%, leading to faster production of safer, more durable components. By refining grain orientation and phase uniformity, fatigue crack propagation resistance improved by 20-30%, significantly enhancing fatigue life and reliability for mission-critical aerospace components, such as turbine blades and structural airframe parts, in an industry where failure is not an option. Additionally, the machine learning-driven design of metamaterials enabled structures with a 15% weight reduction and improved yield strength, demonstrating the feasibility of bioinspired geometries for lightweight applications in space exploration, medical implants, and high-performance automotive components. In the area of titanium and aluminum alloys, machine learning identified key process parameters such as temperature gradients and cooling rates, which govern microstructural evolution and enable fatigue-resistant designs tailored for high-stress environments in aircraft, biomedical prosthetics, and high-speed transportation. Combining theoretical insights and experimental validations, this research highlights the potential of machine learning to refine microstructural properties and establish intelligent, adaptive manufacturing systems, ensuring enhanced reliability, performance, and efficiency in cutting-edge engineering applications.
将机器学习集成到增材制造中,为优化材料性能和设计用于航空航天、生物医学和结构工程等关键应用的高性能、抗疲劳结构提供了变革性机遇。本研究探索了机械机器学习技术,以利用超声疲劳试验数据来定制微观结构特征,在该试验中评估了高达1×10¹⁰次循环的超高周疲劳性能。机器学习模型预测了关键疲劳阈值,优化了工艺参数,并将设计迭代周期减少了50%以上,从而更快地生产出更安全、更耐用的部件。通过细化晶粒取向和相均匀性,抗疲劳裂纹扩展能力提高了20%-30%,显著提高了关键航空航天部件(如涡轮叶片和机身结构部件)的疲劳寿命和可靠性,在这个行业中,失败是不可接受的。此外,机器学习驱动的超材料设计使结构重量减轻了15%,屈服强度提高,证明了受生物启发的几何形状在太空探索、医疗植入物和高性能汽车部件等轻量化应用中的可行性。在钛合金和铝合金领域,机器学习确定了关键工艺参数,如温度梯度和冷却速率,这些参数控制微观结构演变,并实现针对飞机、生物医学假肢和高速运输等高应力环境量身定制的抗疲劳设计。结合理论见解和实验验证,本研究突出了机器学习在细化微观结构性能和建立智能、自适应制造系统方面的潜力,确保在前沿工程应用中提高可靠性、性能和效率。