Bílek Ondřej, Řezníček Martin, Matras Andrzej, Solařík Tomáš, Macků Lubomír
Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 76001 Zlín, Czech Republic.
Department of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology, 31-155 Cracow, Poland.
Materials (Basel). 2025 Apr 5;18(7):1669. doi: 10.3390/ma18071669.
This study investigates the effectiveness of trochoidal (adaptive) milling in machining Glass Fiber Reinforced Polymer (GFRP), emphasizing its potential advantages over conventional milling. Six coated solid carbide end mills, each with distinct geometries, were evaluated under identical conditions to assess the cutting forces, surface quality, dimensional accuracy, burr formation, chip size distribution, and tool wear. Trochoidal milling demonstrated shorter cycle times-up to 23% faster-and higher material removal rates (MRRs), while conventional milling provided superior dimensional control and smoother surfaces in certain fiber-sensitive regions. A four-tooth cutter with a low helix angle (10°) and aluminum-oxide coating delivered the best overall performance, balancing minimal tool wear with high-quality finishes (arithmetic mean roughness, Ra, as low as 1.36 μm). The results indicate that although conventional milling can exhibit a 25%-lower RMS cutting force, its peak forces and extended machining times may limit the throughput. Conversely, trochoidal milling, when coupled with an appropriately robust tool, effectively manages the cutting forces, improves the surface quality, and reduces the machining time. Most chips produced were less than 11 μm in size, highlighting the need for suitable dust extraction. Notably, a hybrid approach-trochoidal roughing followed by conventional finishing-offers a promising method for achieving both efficient material removal and enhanced dimensional accuracy in GFRP components.
本研究调查了摆线(自适应)铣削加工玻璃纤维增强聚合物(GFRP)的有效性,强调了其相对于传统铣削的潜在优势。在相同条件下对六种具有不同几何形状的涂层整体硬质合金立铣刀进行了评估,以评估切削力、表面质量、尺寸精度、毛刺形成、切屑尺寸分布和刀具磨损情况。摆线铣削的加工周期更短,快达23%,且材料去除率(MRR)更高,而传统铣削在某些对纤维敏感的区域能提供更好的尺寸控制和更光滑的表面。一种具有低螺旋角(10°)和氧化铝涂层的四齿刀具总体性能最佳,能在最小刀具磨损与高质量表面光洁度(算术平均粗糙度Ra低至1.36μm)之间取得平衡。结果表明,尽管传统铣削的均方根切削力可低25%,但其峰值力和较长的加工时间可能会限制产量。相反,摆线铣削与适当坚固的刀具配合使用时,能有效管理切削力、提高表面质量并减少加工时间。产生的大多数切屑尺寸小于11μm,这凸显了合适的除尘需求。值得注意的是,一种混合方法——先进行摆线粗加工,然后进行传统精加工——为在GFRP部件中实现高效材料去除和提高尺寸精度提供了一种很有前景的方法。