Imanaka Yoshihiko, Anazawa Toshihisa, Kumasaka Fumiaki, Jippo Hideyuki
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 2430197, Japan.
Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa, 2110053, Japan.
Sci Rep. 2021 Feb 4;11(1):3057. doi: 10.1038/s41598-021-81243-2.
Tailored material is necessary in many industrial applications since material properties directly determine the characteristics of components. However, the conventional trial and error approach is costly and time-consuming. Therefore, materials informatics is expected to overcome these drawbacks. Here, we show a new materials informatics approach applying the Ising model for solving discrete combinatorial optimization problems. In this study, the composition of the composite, aimed at developing a heat sink with three necessary properties: high thermal dissipation, attachability to Si, and a low weight, is optimized. We formulate an energy function equation concerning three objective terms with regard to the thermal conductivity, thermal expansion and specific gravity, with the composition variable and two constrained terms with a quadratic unconstrained binary optimization style equivalent to the Ising model and calculated by a simulated annealing algorithm. The composite properties of the composition selected from ten constituents are verified by the empirical mixture rule of the composite. As a result, an optimized composition with high thermal conductivity, thermal expansion close to that of Si, and a low specific gravity is acquired.
在许多工业应用中,定制材料是必要的,因为材料特性直接决定了部件的性能。然而,传统的试错方法成本高且耗时。因此,材料信息学有望克服这些缺点。在此,我们展示了一种应用伊辛模型解决离散组合优化问题的新材料信息学方法。在本研究中,针对开发具有高热耗散、与硅的附着性以及低重量这三种必要性能的散热器,对复合材料的成分进行了优化。我们针对热导率、热膨胀和比重这三个目标项,结合成分变量,构建了一个能量函数方程,并带有两个约束项,采用与伊辛模型等效的二次无约束二元优化形式,通过模拟退火算法进行计算。从十种成分中选出的成分的复合材料性能,通过复合材料的经验混合法则进行了验证。结果,获得了一种具有高导热率、热膨胀接近硅且比重低的优化成分。