Gupte Trisha P, Azizi Zahra, Kho Pik Fang, Zhou Jiayan, Nzenkue Kevin, Chen Ming-Li, Panyard Daniel J, Guarischi-Sousa Rodrigo, Hilliard Austin T, Sharma Disha, Watson Kathleen, Abbasi Fahim, Tsao Philip S, Clarke Shoa L, Assimes Themistocles L
Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
Meharry Medical College, Nashville, TN, USA.
Diabetes Res Clin Pract. 2025 Jun;224:112194. doi: 10.1016/j.diabres.2025.112194. Epub 2025 Apr 22.
The plasma proteome holds promise as a diagnostic and prognostic tool that can accurately reflect complex human traits and disease processes. We assessed the ability of proteins to predict type 2 diabetes and related traits.
We analyzed clinical, genetic, and proteomic data from three UK Biobank subcohorts for associations with truncal fat, estimated maximum oxygen consumption (VOmax), and type 2 diabetes. Using least absolute shrinkage and selection operator (LASSO) regression, we compared predictive performance of each trait between data types. The benefit of proteomic signatures (PSs) over the type 2 diabetes clinical risk score, QDiabetes was evaluated. Two-sample Mendelian randomization (MR) identified potentially causal proteins for each trait.
LASSO-derived PSs improved prediction of truncal fat and VOmax over clinical and genetic factors. We observed a modest improvement in type 2 diabetes prediction over the QDiabetes score when combining a PS derived for type 2 diabetes that was further augmented with fat- and fitness-associated PSs. Two-sample MR identified a few proteins as potentially causal for each trait.
Plasma PSs modestly improve type 2 diabetes prediction beyond clinical and genetic factors. Candidate causally associated proteins deserve further study as potential novel therapeutic targets for type 2 diabetes.
血浆蛋白质组有望成为一种诊断和预后工具,能够准确反映复杂的人类特征和疾病过程。我们评估了蛋白质预测2型糖尿病及相关特征的能力。
我们分析了来自英国生物银行三个亚队列的临床、遗传和蛋白质组学数据,以研究与躯干脂肪、估计最大耗氧量(VOmax)和2型糖尿病之间的关联。使用最小绝对收缩和选择算子(LASSO)回归,我们比较了不同数据类型之间各特征的预测性能。评估了蛋白质组学特征(PSs)相对于2型糖尿病临床风险评分QDiabetes的优势。两样本孟德尔随机化(MR)确定了每个特征的潜在因果蛋白。
与临床和遗传因素相比,基于LASSO的PSs改善了对躯干脂肪和VOmax的预测。当结合一个为2型糖尿病推导的PS,并进一步增加与脂肪和健康相关的PSs时,我们观察到在2型糖尿病预测方面相对于QDiabetes评分有适度改善。两样本MR确定了一些蛋白质为每个特征的潜在因果蛋白。
血浆PSs在临床和遗传因素之外适度改善了2型糖尿病的预测。作为2型糖尿病潜在的新型治疗靶点,候选因果相关蛋白值得进一步研究。