Suppr超能文献

使用基于多头注意力的表示学习和改进的白鲨优化算法的抗攻击物联网安全框架。

Attack resilient IoT security framework using multi head attention based representation learning with improved white shark optimization algorithm.

作者信息

Aljabri Jawhara

机构信息

Department of Computer Science, University College in Umluj, University of Tabuk, Tabuk, Saudi Arabia.

出版信息

Sci Rep. 2025 Apr 24;15(1):14255. doi: 10.1038/s41598-025-98180-z.

Abstract

At present, the internet of things (IoT) plays a vital part in the growth of programmed electrical power stations while presenting magnificent chances, particularly cybersecurity. In IoT networks, security is now required owing to the higher amount of data to be handled. IoT cybersecurity aims to decrease the cybersecurity threat for users and organizations over protecting IoT assets and privacy. Therefore, identifying numerous anomalies or cyberattacks in a network and constructing an effectual intrusion detection system (IDS) becomes more significant. Artificial intelligence (AI), mostly machine learning (ML) and deep learning (DL), has been employed to construct a data-driven intelligent IDS. This paper presents a multi-head attention-driven intrusion detection with improved white shark optimization algorithm (MHAID-IWSOA) methodology in IoT networks. The main intention of the MHAID-IWSOA methodology relies on enhancing the cybersecurity detection and migration model using advanced optimization algorithms. Initially, the data pre-processing applies min-max scaling to transform input data into a beneficial format. Besides, the sand cat swarm optimization (SCSO) model is used for the feature selection (FS) process. The proposed MHAID-IWSOA model employs the bidirectional gated recurrent unit with multi-head attention (BiGRU-MHA) technique for attack detection and classification. Finally, the improved white shark optimization (IWSO) technique optimally alters the hyperparameter value of the BiGRU-MHA technique and results in superior classification performance. The experimental evaluation of the MHAID-IWSOA model is performed on the Edge-IIoT dataset. The extensive comparison analysis of the MHAID-IWSOA model illustrated a superior accuracy outcome of 98.28% over existing techniques.

摘要

目前,物联网(IoT)在程序化发电站的发展中发挥着至关重要的作用,同时也带来了巨大的机遇,尤其是在网络安全方面。在物联网网络中,由于需要处理的数据量增加,现在对安全性有了要求。物联网网络安全旨在通过保护物联网资产和隐私来降低用户和组织面临的网络安全威胁。因此,识别网络中的众多异常或网络攻击并构建有效的入侵检测系统(IDS)变得更加重要。人工智能(AI),主要是机器学习(ML)和深度学习(DL),已被用于构建数据驱动的智能IDS。本文提出了一种在物联网网络中基于改进白鲨优化算法(MHAID-IWSOA)的多头注意力驱动入侵检测方法。MHAID-IWSOA方法的主要目的是使用先进的优化算法来增强网络安全检测和迁移模型。首先,数据预处理应用最小-最大缩放将输入数据转换为有益的格式。此外,沙猫群优化(SCSO)模型用于特征选择(FS)过程。所提出的MHAID-IWSOA模型采用带有多头注意力的双向门控循环单元(BiGRU-MHA)技术进行攻击检测和分类。最后,改进的白鲨优化(IWSO)技术对BiGRU-MHA技术的超参数值进行优化调整,从而获得卓越的分类性能。MHAID-IWSOA模型的实验评估是在Edge-IIoT数据集上进行的。MHAID-IWSOA模型的广泛比较分析表明,与现有技术相比,其准确率高达98.28%,效果更佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8512/12022048/c7fe2bff19b6/41598_2025_98180_Fig1_HTML.jpg

相似文献

本文引用的文献

2
Leveraging a hybrid convolutional gated recursive diabetes prediction and severity grading model through a mobile app.
PeerJ Comput Sci. 2025 Feb 12;11:e2642. doi: 10.7717/peerj-cs.2642. eCollection 2025.
3
Impact Localization System of CFRP Structure Based on EFPI Sensors.
Sensors (Basel). 2025 Feb 12;25(4):1091. doi: 10.3390/s25041091.
4
An Efficient Multi-Objective White Shark Algorithm.
Biomimetics (Basel). 2025 Feb 13;10(2):112. doi: 10.3390/biomimetics10020112.
5
Elevated few-shot network intrusion detection via self-attention mechanisms and iterative refinement.
PLoS One. 2025 Jan 16;20(1):e0317713. doi: 10.1371/journal.pone.0317713. eCollection 2025.
8
An Ontology-Based Cybersecurity Framework for the Internet of Things.
Sensors (Basel). 2018 Sep 12;18(9):3053. doi: 10.3390/s18093053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验