Suppr超能文献

利用先进的混合深度学习模型进行中间人网络攻击的实时检测与防范。

Harnessing advanced hybrid deep learning model for real-time detection and prevention of man-in-the-middle cyber attacks.

作者信息

Kandasamy V, Roseline A Ameelia

机构信息

Department of Information and Communication Engineering, Anna University, Chennai, India.

Department of Information Technology, Panimalar Engineering College, Chennai, India.

出版信息

Sci Rep. 2025 Jan 11;15(1):1697. doi: 10.1038/s41598-025-85547-5.

Abstract

The growing number of connected devices in smart home environments has amplified security risks, particularly from Man-in-the-Middle (MitM) attacks. These attacks allow cybercriminals to intercept and manipulate communication streams between devices, often remaining undetected. Traditional rule-based methods struggle to cope with the complexity of these attacks, creating a need for more advanced, adaptive intrusion detection systems. This research introduces the AEXB Model, a hybrid deep learning approach that combines the feature extraction capabilities of an AutoEncoder with the classification power of XGBoost. By combining these complementary methods, the model enhances detection accuracy and significantly reduces false positives. The AEXB Model's methodology encompasses robust preprocessing steps, including data cleaning, scaling, and dimensionality reduction, followed by comprehensive feature engineering and selection techniques, such as Recursive Feature Elimination (RFE) and correlation analysis. By applying this approach to the Intrusion Detection in Smart Home (IDSH) dataset, the model achieves an impressive 97.24% accuracy, demonstrating its effectiveness in identifying anomalous network behavior indicative of MitM attacks. Additionally, the model's real-time detection capabilities allow for rapid responses to threats, thus providing continuous protection in dynamic smart home environments.

摘要

智能家居环境中连接设备数量的不断增加,放大了安全风险,尤其是来自中间人(MitM)攻击的风险。这些攻击使网络犯罪分子能够拦截和操纵设备之间的通信流,而且往往难以被察觉。传统的基于规则的方法难以应对这些攻击的复杂性,因此需要更先进的自适应入侵检测系统。本研究引入了AEXB模型,这是一种混合深度学习方法,它将自动编码器的特征提取能力与XGBoost的分类能力相结合。通过结合这些互补方法,该模型提高了检测准确率,并显著减少了误报。AEXB模型的方法包括强大的预处理步骤,如数据清理、缩放和降维,随后是全面的特征工程和选择技术,如递归特征消除(RFE)和相关性分析。通过将这种方法应用于智能家居入侵检测(IDSH)数据集,该模型实现了令人印象深刻的97.24%的准确率,证明了其在识别指示中间人攻击的异常网络行为方面的有效性。此外,该模型的实时检测能力允许对威胁做出快速响应,从而在动态智能家居环境中提供持续保护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76fd/11724893/8306183f162e/41598_2025_85547_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验