文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nano-zinc oxide (nZnO) targets the AMPK-ULK1 pathway to promote bone regeneration.

作者信息

Chen Xiu, Weng Zhenkun, Zhang Hongchao, Jiao Jian, Liang Jingjia, Xu Jin, Wang Dongmei, Liu Qian, Yan Qing, Gu Aihua

机构信息

State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.

Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.

出版信息

Stem Cell Res Ther. 2025 Apr 24;16(1):206. doi: 10.1186/s13287-025-04322-5.


DOI:10.1186/s13287-025-04322-5
PMID:40275329
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12023698/
Abstract

BACKGROUND: Nano-zinc oxide (nZnO) has attracted significant attention in bone tissue engineering due to its antibacterial properties, anti-inflammatory effects, biocompatibility, and chemical stability. Although numerous studies have demonstrated the enhancement of osteogenic differentiation by nZnO-modified tissue engineering materials, the underlying mechanisms remain poorly characterized. METHODS: This study aimed to identify the molecular mechanisms how nZnO promoted osteogenic differentiation and bone regeneration using transcriptome analysis, drug intervention, and shRNA knockdown techniques, etc. First, the study evaluated the in vivo effects of gelatin methacryloyl (GelMA) containing nZnO on bone regeneration using a mouse calvarial defect model. The impact of nZnO exposure on the osteogenic differentiation of mesenchymal stem cells (MSCs) was then assessed. The combined treatment of nZnO and MSCs in GelMA for bone regeneration was assessed in the mouse calvarial defect model thereafter. RESULTS: nZnO induced osteoblastic differentiation to promote bone regeneration. nZnO activated the AMP-dependent protein kinase (AMPK)-ULK1 signals to stimulate autophagosomes formation and facilitate autophagy flow, which was the essential pathway to induce osteogenic differentiation. The combined treatment of MSCs and nZnO significantly enhanced bone regeneration in calvarial defect mice. Conversely, AMPK inhibitor Compound C (C.C) reversed the effects on autophagy flow and osteogenic potentiality induced by nZnO. CONCLUSIONS: These results highlight that nZnO can regulate bone regeneration by activating autophagy through the AMPK/ULK1 signaling pathway, which may provide a novel therapeutic strategy for addressing bone defects using nZnO.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/78151ca795f9/13287_2025_4322_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/b88df47ec571/13287_2025_4322_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/220ca465a386/13287_2025_4322_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/88e6a9412bb4/13287_2025_4322_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/ce686c61bf4d/13287_2025_4322_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/857dd7114a8c/13287_2025_4322_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/d24ff758b51e/13287_2025_4322_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/78151ca795f9/13287_2025_4322_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/b88df47ec571/13287_2025_4322_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/220ca465a386/13287_2025_4322_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/88e6a9412bb4/13287_2025_4322_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/ce686c61bf4d/13287_2025_4322_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/857dd7114a8c/13287_2025_4322_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/d24ff758b51e/13287_2025_4322_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/12023698/78151ca795f9/13287_2025_4322_Fig7_HTML.jpg

相似文献

[1]
Nano-zinc oxide (nZnO) targets the AMPK-ULK1 pathway to promote bone regeneration.

Stem Cell Res Ther. 2025-4-24

[2]
Negative pressure wound therapy improves bone regeneration by promoting osteogenic differentiation via the AMPK-ULK1-autophagy axis.

Autophagy. 2022-9

[3]
Improvement of osteogenic differentiation potential of placenta-derived mesenchymal stem cells by metformin via AMPK pathway activation.

Stem Cell Res Ther. 2024-11-13

[4]
Creatine promotes osteogenic differentiation of dental pulp stem cells via the AMPK-ULK1-autophagy axis.

Connect Tissue Res. 2025-3

[5]
Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Osteogenic Differentiation by Modulating AMPK/ULK1-Dependent Autophagy.

Stem Cells. 2019-10-14

[6]
Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling.

Stem Cells. 2011-6

[7]
The mTOR/ULK1 signaling pathway mediates the autophagy-promoting and osteogenic effects of dicalcium silicate nanoparticles.

J Nanobiotechnology. 2020-8-31

[8]
Graphene Oxide Quantum Dots-Preactivated Dental Pulp Stem Cells/GelMA Facilitates Mitophagy-Regulated Bone Regeneration.

Int J Nanomedicine. 2024

[9]
Melatonin promotes the BMP9-induced osteogenic differentiation of mesenchymal stem cells by activating the AMPK/β-catenin signalling pathway.

Stem Cell Res Ther. 2019-12-21

[10]
Cerium Oxide Nanoparticles-Reinforced GelMA Hydrogel Loading Bone Marrow Stem Cells with Osteogenic and Inflammatory Regulatory Capacity for Bone Defect Repair.

ACS Appl Mater Interfaces. 2024-12-11

本文引用的文献

[1]
A Zinc Oxide Nanowire-Modified Mineralized Collagen Scaffold Promotes Infectious Bone Regeneration.

Small. 2024-5

[2]
Mesoporous TiO Coatings Regulate ZnO Nanoparticle Loading and Zn Release on Titanium Dental Implants for Sustained Osteogenic and Antibacterial Activity.

ACS Appl Mater Interfaces. 2023-3-29

[3]
The role of autophagy in bone metabolism and clinical significance.

Autophagy. 2023-9

[4]
Cytosolic DNA sensing by cGAS/STING promotes TRPV2-mediated Ca release to protect stressed replication forks.

Mol Cell. 2023-2-16

[5]
New insights into activation and function of the AMPK.

Nat Rev Mol Cell Biol. 2023-4

[6]
induces autophagy in bovine mammary epithelial cells the HIF-1α and AMPKα/ULK1 pathway.

Front Immunol. 2022

[7]
Biogenic Synthesis of Zinc Nanoparticles, Their Applications, and Toxicity Prospects.

Front Microbiol. 2022-6-10

[8]
Lethality of Zinc Oxide Nanoparticles Surpasses Conventional Zinc Oxide via Oxidative Stress, Mitochondrial Damage and Calcium Overload: A Comparative Hepatotoxicity Study.

Int J Mol Sci. 2022-6-16

[9]
Autophagic LC3 calcified extracellular vesicles initiate cartilage calcification in osteoarthritis.

Sci Adv. 2022-5-13

[10]
Reshapable Osteogenic Biomaterials Combining Flexible Melt Electrowritten Organic Fibers with Inorganic Bioceramics.

Nano Lett. 2022-5-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索