文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

绘制肿瘤免疫治疗中多组学的快速发展:技术融合与范式转变的文献计量学证据

Mapping the rapid growth of multi-omics in tumor immunotherapy: Bibliometric evidence of technology convergence and paradigm shifts.

作者信息

Dong Huijing, Wang Xinmeng, Zheng Yumin, Li Jia, Liu Zhening, Wang Aolin, Shen Yulei, Wu Daixi, Cui Huijuan

机构信息

China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.

Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China.

出版信息

Hum Vaccin Immunother. 2025 Dec;21(1):2493539. doi: 10.1080/21645515.2025.2493539. Epub 2025 Apr 24.


DOI:10.1080/21645515.2025.2493539
PMID:40275437
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12026087/
Abstract

This study aims to fill the knowledge gap in systematically mapping the evolution of omics-driven tumor immunotherapy research through a bibliometric lens. While omics technologies (genomics, transcriptomics, proteomics, metabolomics)provide multidimensional molecular profiling, their synergistic potential with immunotherapy remains underexplored in large-scale trend analyses. A comprehensive search was conducted using the Web of Science Core Collection for literature related to omics in tumor immunotherapy, up to August 2024. Bibliometric analyses, conducted using R version 4.3.3, VOSviewer 1.6.20, and Citespace 6.2, examined publication trends, country and institutional contributions, journal distributions, keyword co-occurrence, and citation bursts. This analysis of 9,494 publications demonstrates rapid growth in omics-driven tumor immunotherapy research since 2019, with China leading in output (63% of articles) yet exhibiting limited multinational collaboration (7.9% vs. the UK's 61.8%). Keyword co-occurrence and citation burst analyses reveal evolving frontiers: early emphasis on "PD-1/CTLA-4 blockade" has transitioned toward "machine learning," "multi-omics," and "lncRNA," reflecting a shift to predictive modeling and biomarker discovery. Multi-omics integration has facilitated the development of immune infiltration-based prognostic models, such as TIME subtypes, which have been validated across multiple tumor types, which inform clinical trial design (e.g. NCT06833723). Additionally, proteomic analysis of melanoma patients suggests that metabolic biomarkers, particularly oxidative phosphorylation and lipid metabolism, may stratify responders to PD-1 blockade therapy. Moreover, spatial omics has confirmed ENPP1 as a potential novel therapeutic target in Ewing sarcoma. Citation trends underscore clinical translation, particularly mutation-guided therapies. Omics technologies are transforming tumor immunotherapy by enhancing biomarker discovery and improving therapeutic predictions. Future advancements will necessitate longitudinal omics monitoring, AI-driven multi-omics integration, and international collaboration to accelerate clinical translation. This study presents a systematic framework for exploring emerging research frontiers and offers insights for optimizing precision-driven immunotherapy.

摘要

本研究旨在通过文献计量学的视角,填补系统梳理组学驱动的肿瘤免疫治疗研究进展方面的知识空白。虽然组学技术(基因组学、转录组学、蛋白质组学、代谢组学)可提供多维度分子图谱,但在大规模趋势分析中,它们与免疫治疗的协同潜力仍未得到充分探索。利用科学网核心合集对截至2024年8月的肿瘤免疫治疗中与组学相关的文献进行了全面检索。使用R版本4.3.3、VOSviewer 1.6.20和Citespace 6.2进行文献计量分析,研究了出版趋势、国家和机构贡献、期刊分布、关键词共现以及引文爆发情况。对9494篇出版物的分析表明,自2019年以来,组学驱动的肿瘤免疫治疗研究迅速增长,中国在产出方面领先(占文章的63%),但跨国合作有限(7.9%,而英国为61.8%)。关键词共现和引文爆发分析揭示了不断演变的前沿领域:早期对“PD-1/CTLA-4阻断”的关注已转向“机器学习”、“多组学”和“长链非编码RNA”,这反映出向预测模型和生物标志物发现的转变。多组学整合促进了基于免疫浸润的预后模型的发展,如肿瘤免疫微环境(TIME)亚型,该模型已在多种肿瘤类型中得到验证,为临床试验设计提供了参考(如NCT06833723)。此外,对黑色素瘤患者的蛋白质组学分析表明,代谢生物标志物,特别是氧化磷酸化和脂质代谢,可能对PD-1阻断疗法的反应者进行分层。此外,空间组学已证实ENPP1是尤因肉瘤潜在的新型治疗靶点。引文趋势强调了临床转化,特别是突变导向疗法。组学技术通过加强生物标志物发现和改善治疗预测,正在改变肿瘤免疫治疗。未来的进展将需要纵向组学监测、人工智能驱动的多组学整合以及国际合作,以加速临床转化。本研究提出了一个探索新兴研究前沿的系统框架,并为优化精准驱动的免疫治疗提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/3401b5cffbb4/KHVI_A_2493539_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/388e4b6ae09a/KHVI_A_2493539_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/c671bd4bfd05/KHVI_A_2493539_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/d66ab9d53fc2/KHVI_A_2493539_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/46e9f8f4c477/KHVI_A_2493539_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/d048ccf055c6/KHVI_A_2493539_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/dd84e478731e/KHVI_A_2493539_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/f9f243cd58c6/KHVI_A_2493539_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/3401b5cffbb4/KHVI_A_2493539_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/388e4b6ae09a/KHVI_A_2493539_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/c671bd4bfd05/KHVI_A_2493539_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/d66ab9d53fc2/KHVI_A_2493539_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/46e9f8f4c477/KHVI_A_2493539_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/d048ccf055c6/KHVI_A_2493539_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/dd84e478731e/KHVI_A_2493539_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/f9f243cd58c6/KHVI_A_2493539_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4128/12026087/3401b5cffbb4/KHVI_A_2493539_F0008_OC.jpg

相似文献

[1]
Mapping the rapid growth of multi-omics in tumor immunotherapy: Bibliometric evidence of technology convergence and paradigm shifts.

Hum Vaccin Immunother. 2025-12

[2]
Global research trends and focus on immunotherapy for endometrial cancer: a comprehensive bibliometric insight and visualization analysis (2012-2024).

Front Immunol. 2025-4-8

[3]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[4]
Global trends in tertiary lymphoid structures: a bibliometric analysis from 2014 to 2023.

Front Immunol. 2024-11-15

[5]
Integrative multi-omics and big data analysis of global nutrition and radiotherapy trends.

Int J Biochem Cell Biol. 2024-12

[6]
Current perspectives and trends of CD39-CD73-eAdo/A2aR research in tumor microenvironment: a bibliometric analysis.

Front Immunol. 2024

[7]
Bibliometric study of immunotherapy for hepatocellular carcinoma.

Front Immunol. 2023

[8]
A bibliometric insight into neoadjuvant chemotherapy in bladder cancer: trends, collaborations, and future avenues.

Front Immunol. 2024

[9]
Radiomics in precision medicine for colorectal cancer: a bibliometric analysis (2013-2023).

Front Oncol. 2024-10-30

[10]
Research hotspots and frontiers of machine learning in renal medicine: a bibliometric and visual analysis from 2013 to 2024.

Int Urol Nephrol. 2025-3

本文引用的文献

[1]
Radiomics in precision medicine for colorectal cancer: a bibliometric analysis (2013-2023).

Front Oncol. 2024-10-30

[2]
Identification of microenvironment features associated with primary resistance to anti-PD-1/PD-L1 + antiangiogenesis in gastric cancer through spatial transcriptomics and plasma proteomics.

Mol Cancer. 2024-9-13

[3]
Exploring potential roles of long non-coding RNAs in cancer immunotherapy: a comprehensive review.

Front Immunol. 2024

[4]
Deciphering the tumor immune microenvironment from a multidimensional omics perspective: insight into next-generation CAR-T cell immunotherapy and beyond.

Mol Cancer. 2024-6-26

[5]
Challenges and opportunities in cancer immunotherapy: a Society for Immunotherapy of Cancer (SITC) strategic vision.

J Immunother Cancer. 2024-6-19

[6]
Comprehensive multi-omics analysis of pyroptosis for optimizing neoadjuvant immunotherapy in patients with gastric cancer.

Theranostics. 2024

[7]
Bibliometric analysis: A few suggestions.

Curr Probl Cardiol. 2024-8

[8]
Circumventing drug resistance in gastric cancer: A spatial multi-omics exploration of chemo and immuno-therapeutic response dynamics.

Drug Resist Updat. 2024-5

[9]
Current status and future of cancer vaccines: A bibliographic study.

Heliyon. 2024-1-11

[10]
Multi-omics Analysis Reveals Immune Features Associated with Immunotherapy Benefit in Patients with Squamous Cell Lung Cancer from Phase III Lung-MAP S1400I Trial.

Clin Cancer Res. 2024-4-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索