Dong Huijing, Wang Xinmeng, Zheng Yumin, Li Jia, Liu Zhening, Wang Aolin, Shen Yulei, Wu Daixi, Cui Huijuan
China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China.
Hum Vaccin Immunother. 2025 Dec;21(1):2493539. doi: 10.1080/21645515.2025.2493539. Epub 2025 Apr 24.
This study aims to fill the knowledge gap in systematically mapping the evolution of omics-driven tumor immunotherapy research through a bibliometric lens. While omics technologies (genomics, transcriptomics, proteomics, metabolomics)provide multidimensional molecular profiling, their synergistic potential with immunotherapy remains underexplored in large-scale trend analyses. A comprehensive search was conducted using the Web of Science Core Collection for literature related to omics in tumor immunotherapy, up to August 2024. Bibliometric analyses, conducted using R version 4.3.3, VOSviewer 1.6.20, and Citespace 6.2, examined publication trends, country and institutional contributions, journal distributions, keyword co-occurrence, and citation bursts. This analysis of 9,494 publications demonstrates rapid growth in omics-driven tumor immunotherapy research since 2019, with China leading in output (63% of articles) yet exhibiting limited multinational collaboration (7.9% vs. the UK's 61.8%). Keyword co-occurrence and citation burst analyses reveal evolving frontiers: early emphasis on "PD-1/CTLA-4 blockade" has transitioned toward "machine learning," "multi-omics," and "lncRNA," reflecting a shift to predictive modeling and biomarker discovery. Multi-omics integration has facilitated the development of immune infiltration-based prognostic models, such as TIME subtypes, which have been validated across multiple tumor types, which inform clinical trial design (e.g. NCT06833723). Additionally, proteomic analysis of melanoma patients suggests that metabolic biomarkers, particularly oxidative phosphorylation and lipid metabolism, may stratify responders to PD-1 blockade therapy. Moreover, spatial omics has confirmed ENPP1 as a potential novel therapeutic target in Ewing sarcoma. Citation trends underscore clinical translation, particularly mutation-guided therapies. Omics technologies are transforming tumor immunotherapy by enhancing biomarker discovery and improving therapeutic predictions. Future advancements will necessitate longitudinal omics monitoring, AI-driven multi-omics integration, and international collaboration to accelerate clinical translation. This study presents a systematic framework for exploring emerging research frontiers and offers insights for optimizing precision-driven immunotherapy.
本研究旨在通过文献计量学的视角,填补系统梳理组学驱动的肿瘤免疫治疗研究进展方面的知识空白。虽然组学技术(基因组学、转录组学、蛋白质组学、代谢组学)可提供多维度分子图谱,但在大规模趋势分析中,它们与免疫治疗的协同潜力仍未得到充分探索。利用科学网核心合集对截至2024年8月的肿瘤免疫治疗中与组学相关的文献进行了全面检索。使用R版本4.3.3、VOSviewer 1.6.20和Citespace 6.2进行文献计量分析,研究了出版趋势、国家和机构贡献、期刊分布、关键词共现以及引文爆发情况。对9494篇出版物的分析表明,自2019年以来,组学驱动的肿瘤免疫治疗研究迅速增长,中国在产出方面领先(占文章的63%),但跨国合作有限(7.9%,而英国为61.8%)。关键词共现和引文爆发分析揭示了不断演变的前沿领域:早期对“PD-1/CTLA-4阻断”的关注已转向“机器学习”、“多组学”和“长链非编码RNA”,这反映出向预测模型和生物标志物发现的转变。多组学整合促进了基于免疫浸润的预后模型的发展,如肿瘤免疫微环境(TIME)亚型,该模型已在多种肿瘤类型中得到验证,为临床试验设计提供了参考(如NCT06833723)。此外,对黑色素瘤患者的蛋白质组学分析表明,代谢生物标志物,特别是氧化磷酸化和脂质代谢,可能对PD-1阻断疗法的反应者进行分层。此外,空间组学已证实ENPP1是尤因肉瘤潜在的新型治疗靶点。引文趋势强调了临床转化,特别是突变导向疗法。组学技术通过加强生物标志物发现和改善治疗预测,正在改变肿瘤免疫治疗。未来的进展将需要纵向组学监测、人工智能驱动的多组学整合以及国际合作,以加速临床转化。本研究提出了一个探索新兴研究前沿的系统框架,并为优化精准驱动的免疫治疗提供了见解。
Front Biosci (Landmark Ed). 2022-8-31
Front Immunol. 2024-11-15
Int J Biochem Cell Biol. 2024-12
Front Immunol. 2023
Front Oncol. 2024-10-30
Front Oncol. 2024-10-30
J Immunother Cancer. 2024-6-19
Curr Probl Cardiol. 2024-8
Heliyon. 2024-1-11