Li Hao, Zhuang Yupei, Yuan Weichen, Gu Yutian, Dai Xinyan, Li Muhan, Chen Haibin, Zhou Hongguang
Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
Front Oncol. 2024 Oct 30;14:1464104. doi: 10.3389/fonc.2024.1464104. eCollection 2024.
The incidence and mortality of colorectal cancer (CRC) have been rising steadily. Early diagnosis and precise treatment are essential for improving patient survival outcomes. Over the past decade, the integration of artificial intelligence (AI) and medical imaging technologies has positioned radiomics as a critical area of research in the diagnosis, treatment, and prognosis of CRC.
We conducted a comprehensive review of CRC-related radiomics literature published between 1 January 2013 and 31 December 2023 using the Web of Science Core Collection database. Bibliometric tools such as Bibliometrix, VOSviewer, and CiteSpace were employed to perform an in-depth bibliometric analysis.
Our search yielded 1,226 publications, revealing a consistent annual growth in CRC radiomics research, with a significant rise after 2019. China led in publication volume (406 papers), followed by the United States (263 papers), whereas the United States dominated in citation numbers. Notable institutions included General Electric, Harvard University, University of London, Maastricht University, and the Chinese Academy of Sciences. Prominent researchers in this field are Tian J from the Chinese Academy of Sciences, with the highest publication count, and Ganeshan B from the University of London, with the most citations. Journals leading in publication and citation counts are . Keyword and citation analysis identified deep learning, texture analysis, rectal cancer, image analysis, and management as prevailing research themes. Additionally, recent trends indicate the growing importance of AI and multi-omics integration, with a focus on improving precision medicine applications in CRC. Emerging keywords such as deep learning and AI have shown rapid growth in citation bursts over the past 3 years, reflecting a shift toward more advanced technological applications.
Radiomics plays a crucial role in the clinical management of CRC, providing valuable insights for precision medicine. It significantly contributes to predicting molecular biomarkers, assessing tumor aggressiveness, and monitoring treatment efficacy. Future research should prioritize advancing AI algorithms, enhancing multi-omics data integration, and further expanding radiomics applications in CRC precision medicine.
结直肠癌(CRC)的发病率和死亡率一直在稳步上升。早期诊断和精准治疗对于改善患者生存结局至关重要。在过去十年中,人工智能(AI)与医学成像技术的融合使放射组学成为CRC诊断、治疗和预后研究的关键领域。
我们使用科学网核心合集数据库对2013年1月1日至2023年12月31日期间发表的与CRC相关的放射组学文献进行了全面综述。使用Bibliometrix、VOSviewer和CiteSpace等文献计量工具进行深入的文献计量分析。
我们的检索共得到1226篇出版物,显示CRC放射组学研究呈逐年增长趋势,2019年后显著上升。中国在出版物数量上领先(406篇论文),其次是美国(263篇论文),而美国在被引次数方面占主导地位。著名机构包括通用电气、哈佛大学、伦敦大学、马斯特里赫特大学和中国科学院。该领域的杰出研究人员有中国科学院的田捷,发表论文数量最多;以及伦敦大学的加内山·B,被引次数最多。在出版物数量和被引次数方面领先的期刊是 。关键词和被引分析确定深度学习、纹理分析、直肠癌、图像分析和管理是主要研究主题。此外,近期趋势表明AI与多组学整合的重要性日益增加,重点是改善CRC中的精准医学应用。诸如深度学习和AI等新兴关键词在过去3年的被引爆发中显示出快速增长,反映出向更先进技术应用的转变。
放射组学在CRC的临床管理中发挥着关键作用,为精准医学提供了有价值的见解。它在预测分子生物标志物、评估肿瘤侵袭性和监测治疗效果方面做出了重大贡献。未来研究应优先推进AI算法、加强多组学数据整合,并进一步扩大放射组学在CRC精准医学中的应用。