Kelly Gilor, Plesser Elena, Bdolach Eyal, Arroyave Maria, Belausov Eduard, Doron-Faigenboim Adi, Rozen Ada, Zemach Hanita, Zach Yair Yehoshua, Goldenberg Livnat, Arad Tal, Yaniv Yossi, Sade Nir, Sherman Amir, Eyal Yoram, Carmi Nir
Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel.
School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel.
Plant J. 2025 Apr;122(2):e70155. doi: 10.1111/tpj.70155.
Recent advances in the field of genome editing offer a promising avenue for targeted trait improvements in fruit trees. However, the predominant method taken for genome editing in citrus (and other fruit trees) involves the time-consuming tissue culture approach, thereby prolonging the overall citrus breeding process and subjecting it to the drawbacks associated with somaclonal variation. In this study, we introduce an in planta approach for genome editing in soil-grown citrus plants via direct transformation of young seedlings. Our editing system, abbreviated here as IPGEC (in planta genome editing in citrus), is designed to transiently co-express three key gene groups in citrus tissue via Agrobacterium tumefaciens: (i) a genome-editing catalytic group, (ii) a shoot induction and regeneration group, and (iii) a T-DNA enhanced delivery group. This integrated system significantly improves de novo shoot induction and regeneration efficiency of edited tissue. By incorporating single-guides RNA's (sgRNA's) targeting the carotenoid biosynthetic gene PHYTOENE DESATURASE (CsPDS), the IPGEC system effectively produced mutated albino shoots, confirming its ability to generate homozygous/biallelic genome-edited plants. By using high throughput screening, we provide evidence that transgene-free genome-edited plants could be obtained following the IPGEC approach. Our findings further suggest that the efficiency of specific developmental regulators in inducing transformation and regeneration rates may be cultivar-specific and therefore needs to be optimized per cultivar. Finally, targeted breeding for specific trait improvements in already successful cultivars is likely to revolutionize fruit tree breeding and will pave the way for accelerating the development of high-quality citrus cultivars.
基因组编辑领域的最新进展为果树的目标性状改良提供了一条充满希望的途径。然而,柑橘(及其他果树)基因组编辑所采用的主要方法涉及耗时的组织培养方法,从而延长了整个柑橘育种过程,并使其受到体细胞克隆变异相关缺点的影响。在本研究中,我们引入了一种通过对幼苗进行直接转化在土壤种植的柑橘植株中进行基因组编辑的体内方法。我们的编辑系统在这里简称为IPGEC(柑橘体内基因组编辑),旨在通过根癌农杆菌在柑橘组织中瞬时共表达三个关键基因组:(i)一个基因组编辑催化组,(ii)一个芽诱导和再生组,以及(iii)一个T-DNA增强递送组。这个集成系统显著提高了编辑组织的从头芽诱导和再生效率。通过整合靶向类胡萝卜素生物合成基因八氢番茄红素去饱和酶(CsPDS)的单向导RNA(sgRNA),IPGEC系统有效地产生了突变的白化芽,证实了其产生纯合/双等位基因基因组编辑植物的能力。通过高通量筛选,我们提供了证据表明采用IPGEC方法可以获得无转基因的基因组编辑植物。我们的研究结果进一步表明,特定发育调节因子在诱导转化和再生率方面的效率可能因品种而异,因此需要针对每个品种进行优化。最后,对已经成功的品种进行特定性状改良的定向育种可能会彻底改变果树育种,并将为加速高品质柑橘品种的开发铺平道路。