National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
Protoplasma. 2023 Sep;260(5):1437-1451. doi: 10.1007/s00709-023-01856-4. Epub 2023 May 3.
Chickpea is considered recalcitrant to in vitro tissue culture amongst all edible legumes. The clustered, regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-based genome editing in chickpea can remove the bottleneck of limited genetic variation in this cash crop, which is rich in nutrients and protein. However, generating stable mutant lines using CRISPR/Cas9 requires efficient and highly reproducible transformation protocols. As an attempt to solve this problem, we developed a modified and optimized protocol for chickpea transformation. This study transformed the single cotyledon half-embryo explants using CaMV35S promoter to drive two marker genes (β-glucuronidase gene; GUS and green fluorescent protein; GFP) through binary vectors pBI101.2 and modified pGWB2, respectively. These vectors were delivered in the explants through three different strains of Agrobacterium tumefaciens, viz., GV3101, EHA105, and LBA4404. We found better efficiency with the strain GV3101 (17.56%) compared with two other strains, i.e., 8.54 and 5.43%, respectively. We recorded better regeneration frequencies in plant tissue culture for the constructs GUS and GFP, i.e., 20.54% and 18.09%, respectively. The GV3101 was further used for the transformation of the genome editing construct. For the development of genome-edited plants, we used this modified protocol. We also used a modified binary vector pPZP200 by introducing a CaMV35S-driven chickpea codon-optimized SpCas9 gene. The promoter of the Medicago truncatula U6.1 snRNA gene was used to drive the guide RNA cassettes. This cassette targeted and edited the chickpea phytoene desaturase (CaPDS) gene. A single gRNA was found sufficient to achieve high efficiency (42%) editing with the generation of PDS mutants with albino phenotypes. A simple, rapid, highly reproducible, stable transformation and CRISPR/Cas9-based genome editing system for chickpea was established. This study aimed to demonstrate this system's applicability by performing a gene knockout of the chickpea PDS gene using an improved chickpea transformation protocol for the first time.
鹰嘴豆在所有食用豆类中被认为是体外组织培养的抗性品种。基于聚类、规则间隔短回文重复序列/CRISPR 相关蛋白 9(CRISPR/Cas9)的基因组编辑可以消除这种富含营养和蛋白质的经济作物遗传变异有限的瓶颈。然而,使用 CRISPR/Cas9 生成稳定的突变株需要高效且高度可重复的转化方案。作为解决此问题的尝试,我们开发了一种改良和优化的鹰嘴豆转化方案。本研究通过二元载体 pBI101.2 和改良的 pGWB2,分别使用 CaMV35S 启动子驱动两个标记基因(β-葡萄糖醛酸酶基因;GUS 和绿色荧光蛋白;GFP),转化单子叶半胚轴外植体。这些载体通过三种不同的根癌农杆菌菌株 GV3101、EHA105 和 LBA4404 递送至外植体中。我们发现与另外两种菌株(分别为 8.54%和 5.43%)相比,菌株 GV3101 的效率更高(17.56%)。我们记录到用于 GUS 和 GFP 构建体的植物组织培养中的更好的再生频率,分别为 20.54%和 18.09%。GV3101 进一步用于基因组编辑构建体的转化。为了开发基因组编辑植物,我们使用了这种改良的方案。我们还通过引入 CaMV35S 驱动的鹰嘴豆密码子优化的 SpCas9 基因,使用改良的二元载体 pPZP200。苜蓿 U6.1 snRNA 基因的启动子用于驱动指导 RNA 盒。该盒靶向并编辑了鹰嘴豆八氢番茄红素去饱和酶(CaPDS)基因。仅发现单个 gRNA 就足以实现高效率(42%)编辑,并产生具有白化表型的 PDS 突变体。建立了一种简单、快速、高度可重复、稳定的鹰嘴豆转化和基于 CRISPR/Cas9 的基因组编辑系统。本研究旨在通过首次使用改良的鹰嘴豆转化方案对鹰嘴豆 PDS 基因进行基因敲除来证明该系统的适用性。