Sarfraz Muhammad, Behl Goutam, Rani Sweta, O'Reilly Niall, McLoughlin Peter, O'Donovan Orla, Reynolds Alison L, Lynch John, Fitzhenry Laurence
Ocular Therapeutics Research Group (OTRG), Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), South East Technological University Waterford X91 KOEK Waterford Ireland
Faculty of Pharmacy, The University of Lahore Lahore 56400 Pakistan.
Nanoscale Adv. 2025 Apr 23;7(10):3125-3142. doi: 10.1039/d4na01086h. eCollection 2025 May 13.
Conventional eye drops show low bioavailability (below 20%) due to the eye's inherent tissue barriers and unique microenvironment. Recent advancements in pharmaceutical nanotechnology have explored various nanoparticle systems, such as micelles, liposomes, and nanoemulsions, to enhance corneal permeation and prolong drug retention. In this study, we propose a twin nanoparticulate system, combining the advantages of two nanoparticles to improve drug targeting and therapeutic efficacy. A dexamethasone-loaded liposome-microemulsion (LME) twin nanoparticulate system was developed using high-pressure homogenization and successfully scaled up. Both liposomes and microemulsions were of similar size (∼60 nm) and displayed uniform distribution (polydispersity index < 0.2) upon combination. The final formulation was hypo-osmolar (osmolality < 100 mOsm per Kg), making it ideal for dry eye relief. Drug release was extended for up to 8 h, following a non-Fickian diffusion pattern. The LME formulation, tested under different conditions (2-8 °C and 25 °C with 60% relative humidity), was found to be stable for 6 months. It showed no cytotoxicity in human corneal epithelial cells up to 10 μM drug concentration. Fluorescence microscopy revealed rapid nanoparticle uptake by cells within 5 minutes. Human corneal epithelial cells showed a marked reduction in inflammatory biomarkers (IL-6, IL-8, and TNF-α) after drug-loaded LME treatments, compared to the control. Corneal tissue imaging confirmed prolonged retention of nanoparticles within the tissue. A whole eye permeation study demonstrated higher drug concentrations in the aqueous humour of LME drug-treated rabbit eyes compared to a reference product. This twin nanoparticulate system, loaded with dexamethasone, offers a promising next-generation treatment for dry eye disease (DED).
由于眼睛固有的组织屏障和独特的微环境,传统眼药水的生物利用度较低(低于20%)。药物纳米技术的最新进展探索了各种纳米颗粒系统,如胶束、脂质体和纳米乳剂,以增强角膜渗透并延长药物滞留时间。在本研究中,我们提出了一种双纳米颗粒系统,结合两种纳米颗粒的优点来提高药物靶向性和治疗效果。使用高压均质法开发了一种载有地塞米松的脂质体 - 微乳(LME)双纳米颗粒系统,并成功进行了放大生产。脂质体和微乳的大小相似(约60 nm),组合后显示出均匀分布(多分散指数<0.2)。最终制剂为低渗(渗透压<100 mOsm/kg),使其成为缓解干眼症的理想选择。药物释放遵循非菲克扩散模式,延长至8小时。在不同条件(2 - 8°C和25°C,相对湿度60%)下测试的LME制剂在6个月内保持稳定。在药物浓度高达10 μM时,它在人角膜上皮细胞中未显示出细胞毒性。荧光显微镜显示细胞在5分钟内迅速摄取纳米颗粒。与对照组相比,载药LME处理后人角膜上皮细胞中的炎症生物标志物(IL - 6、IL - 8和TNF - α)显著减少。角膜组织成像证实纳米颗粒在组织内的滞留时间延长。全眼渗透研究表明,与参考产品相比,LME药物处理的兔眼房水中的药物浓度更高。这种载有地塞米松的双纳米颗粒系统为干眼症(DED)提供了一种有前景的下一代治疗方法。