Suppr超能文献

基于随机决策规则的生成对抗网络新范式。

A New Paradigm for Generative Adversarial Networks based on Randomized Decision Rules.

作者信息

Kim Sehwan, Song Qifan, Liang Faming

机构信息

Department of Statistics, Purdue University, West Lafayette, IN 47907.

出版信息

Stat Sin. 2025 Apr;35(2):897-918. doi: 10.5705/ss.202022.0404.

Abstract

The Generative Adversarial Network (GAN) was recently introduced in the literature as a novel machine learning method for training generative models. It has many applications in statistics such as nonparametric clustering and nonparametric conditional independence tests. However, training the GAN is notoriously difficult due to the issue of mode collapse, which refers to the lack of diversity among generated data. In this paper, we identify the reasons why the GAN suffers from this issue, and to address it, we propose a new formulation for the GAN based on randomized decision rules. In the new formulation, the discriminator converges to a fixed point while the generator converges to a distribution at the Nash equilibrium. We propose to train the GAN by an empirical Bayes-like method by treating the discriminator as a hyper-parameter of the posterior distribution of the generator. Specifically, we simulate generators from its posterior distribution conditioned on the discriminator using a stochastic gradient Markov chain Monte Carlo (MCMC) algorithm, and update the discriminator using stochastic gradient descent along with simulations of the generators. We establish convergence of the proposed method to the Nash equilibrium. Apart from image generation, we apply the proposed method to nonparametric clustering and nonparametric conditional independence tests. A portion of the numerical results is presented in the supplementary material.

摘要

生成对抗网络(GAN)最近作为一种用于训练生成模型的新型机器学习方法被引入文献。它在统计学中有许多应用,如非参数聚类和非参数条件独立性检验。然而,由于模式崩溃问题,训练GAN非常困难,模式崩溃是指生成数据缺乏多样性。在本文中,我们确定了GAN出现此问题的原因,并为解决该问题,基于随机决策规则提出了一种新的GAN公式。在新公式中,判别器收敛到一个不动点,而生成器在纳什均衡处收敛到一个分布。我们建议通过一种类似经验贝叶斯的方法训练GAN,将判别器视为生成器后验分布的超参数。具体来说,我们使用随机梯度马尔可夫链蒙特卡罗(MCMC)算法从基于判别器的后验分布中模拟生成器,并使用随机梯度下降以及生成器的模拟来更新判别器。我们证明了所提出方法收敛到纳什均衡。除了图像生成,我们还将所提出的方法应用于非参数聚类和非参数条件独立性检验。部分数值结果在补充材料中给出。

相似文献

1
A New Paradigm for Generative Adversarial Networks based on Randomized Decision Rules.
Stat Sin. 2025 Apr;35(2):897-918. doi: 10.5705/ss.202022.0404.
2
Triple Generative Adversarial Networks.
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9629-9640. doi: 10.1109/TPAMI.2021.3127558. Epub 2022 Nov 7.
3
A Framework of Composite Functional Gradient Methods for Generative Adversarial Models.
IEEE Trans Pattern Anal Mach Intell. 2021 Jan;43(1):17-32. doi: 10.1109/TPAMI.2019.2924428. Epub 2020 Dec 4.
4
Training Generative Adversarial Networks via Stochastic Nash Games.
IEEE Trans Neural Netw Learn Syst. 2023 Mar;34(3):1319-1328. doi: 10.1109/TNNLS.2021.3105227. Epub 2023 Feb 28.
6
Consistency of Multiagent Distributed Generative Adversarial Networks.
IEEE Trans Cybern. 2022 Jun;52(6):4886-4896. doi: 10.1109/TCYB.2020.3022695. Epub 2022 Jun 16.
7
Generative adversarial networks with decoder-encoder output noises.
Neural Netw. 2020 Jul;127:19-28. doi: 10.1016/j.neunet.2020.04.005. Epub 2020 Apr 9.
9
A medical image classification method based on self-regularized adversarial learning.
Med Phys. 2024 Nov;51(11):8232-8246. doi: 10.1002/mp.17320. Epub 2024 Jul 30.

本文引用的文献

1
A Stochastic Approximation-Langevinized Ensemble Kalman Filter Algorithm for State Space Models with Unknown Parameters.
J Comput Graph Stat. 2023;32(2):448-469. doi: 10.1080/10618600.2022.2107531. Epub 2022 Oct 7.
2
Consistent Sparse Deep Learning: Theory and Computation.
J Am Stat Assoc. 2022;117(540):1981-1995. doi: 10.1080/01621459.2021.1895175. Epub 2021 Apr 20.
3
Stochastic gradient Langevin dynamics with adaptive drifts.
J Stat Comput Simul. 2022;92(2):318-336. doi: 10.1080/00949655.2021.1958812. Epub 2021 Jul 27.
4
Learning Sparse Deep Neural Networks with a Spike-and-Slab Prior.
Stat Probab Lett. 2022 Jan;180. doi: 10.1016/j.spl.2021.109246. Epub 2021 Sep 24.
5
Extended Stochastic Gradient MCMC for Large-Scale Bayesian Variable Selection.
Biometrika. 2020 Dec;107(4):997-1004. doi: 10.1093/biomet/asaa029. Epub 2020 Jul 13.
6
Density estimation using deep generative neural networks.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2101344118.
7
An Adaptive Empirical Bayesian Method for Sparse Deep Learning.
Adv Neural Inf Process Syst. 2019 Dec;2019:5563-5573.
9
On the Effectiveness of Least Squares Generative Adversarial Networks.
IEEE Trans Pattern Anal Mach Intell. 2019 Dec;41(12):2947-2960. doi: 10.1109/TPAMI.2018.2872043. Epub 2018 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验