Suppr超能文献

最小二乘生成对抗网络的有效性。

On the Effectiveness of Least Squares Generative Adversarial Networks.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Dec;41(12):2947-2960. doi: 10.1109/TPAMI.2018.2872043. Epub 2018 Sep 24.

Abstract

Unsupervised learning with generative adversarial networks (GANs) has proven to be hugely successful. Regular GANs hypothesize the discriminator as a classifier with the sigmoid cross entropy loss function. However, we found that this loss function may lead to the vanishing gradients problem during the learning process. To overcome such a problem, we propose in this paper the Least Squares Generative Adversarial Networks (LSGANs) which adopt the least squares loss for both the discriminator and the generator. We show that minimizing the objective function of LSGAN yields minimizing the Pearson χ divergence. We also show that the derived objective function that yields minimizing the Pearson χ divergence performs better than the classical one of using least squares for classification. There are two benefits of LSGANs over regular GANs. First, LSGANs are able to generate higher quality images than regular GANs. Second, LSGANs perform more stably during the learning process. For evaluating the image quality, we conduct both qualitative and quantitative experiments, and the experimental results show that LSGANs can generate higher quality images than regular GANs. Furthermore, we evaluate the stability of LSGANs in two groups. One is to compare between LSGANs and regular GANs without gradient penalty. We conduct three experiments, including Gaussian mixture distribution, difficult architectures, and a newly proposed method - datasets with small variability, to illustrate the stability of LSGANs. The other one is to compare between LSGANs with gradient penalty (LSGANs-GP) and WGANs with gradient penalty (WGANs-GP). The experimental results show that LSGANs-GP succeed in training for all the difficult architectures used in WGANs-GP, including 101-layer ResNet.

摘要

无监督学习与生成对抗网络 (GANs) 已被证明是非常成功的。常规 GANs 假设判别器是一个具有 sigmoid 交叉熵损失函数的分类器。然而,我们发现这种损失函数可能会导致学习过程中的梯度消失问题。为了解决这个问题,我们在本文中提出了最小二乘生成对抗网络 (LSGANs),它对判别器和生成器都采用最小二乘损失。我们表明,最小化 LSGAN 的目标函数会导致最小化 Pearson χ 散度。我们还表明,产生最小化 Pearson χ 散度的导出目标函数比使用最小二乘进行分类的经典目标函数表现更好。LSGANs 相对于常规 GANs 有两个优势。首先,LSGANs 能够生成比常规 GANs 更高质量的图像。其次,LSGANs 在学习过程中表现更稳定。为了评估图像质量,我们进行了定性和定量实验,实验结果表明 LSGANs 可以生成比常规 GANs 更高质量的图像。此外,我们在两组实验中评估了 LSGANs 的稳定性。一组是在没有梯度惩罚的情况下比较 LSGANs 和常规 GANs。我们进行了三个实验,包括高斯混合分布、困难的架构和新提出的方法——具有小变异性的数据集,以说明 LSGANs 的稳定性。另一组是比较具有梯度惩罚的 LSGANs (LSGANs-GP) 和具有梯度惩罚的 WGANs (WGANs-GP)。实验结果表明,LSGANs-GP 成功地训练了 WGANs-GP 中使用的所有困难架构,包括 101 层 ResNet。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验