Ku Yu-Ping, Kumar Kavita, Bonnefont Antoine, Jiao Li, Mazzucato Marco, Durante Christian, Jaouen Frédéric, Cherevko Serhiy
Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2) Cauerstraße 1 91058 Erlangen Germany
Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Germany.
Chem Sci. 2025 Apr 14;16(20):8697-8710. doi: 10.1039/d5sc00547g. eCollection 2025 May 21.
Fe-N-C electrocatalysts demonstrate high potential in catalyzing oxygen reduction reaction (ORR) in polymer electrolyte fuel cells, yet the bottleneck for their application is their moderate stabilities. In our previous work, we discovered a linear correlation between the rates of ORR and Fe dissolution in alkaline media at room temperature, and the stability (-) number descriptor that reflects this correlation was introduced. On the way toward further generalization and establishment of this descriptor, we investigate the effect of pH, potential, current density, and temperature on the dissolution behavior of various representative Fe-N-C electrocatalysts. It is shown that the -number concept is also applicable for ORR and Fe dissolution in alkaline electrolytes at 70 °C. It is more challenging to apply the -number in acidic media, where the -number is a function of ORR current density. A kinetic model is introduced, showing that the local pH inside the catalyst layer rises significantly with increasing current densities. The pH dependence of the -number explains the results in acidic electrolytes. Accounting for such a dependence, the -number descriptor can also benchmark Fe-N-C stability in acidic electrolytes. It is considered that this concept can also be extended to other reactions, allowing more rational activity and stability screening of electrocatalysts.
铁氮碳(Fe-N-C)电催化剂在催化聚合物电解质燃料电池中的氧还原反应(ORR)方面显示出巨大潜力,然而其应用的瓶颈在于其稳定性一般。在我们之前的工作中,我们发现了室温下碱性介质中ORR速率与铁溶解速率之间的线性关系,并引入了反映这种关系的稳定性(-)数描述符。在进一步推广和确立该描述符的过程中,我们研究了pH值、电势、电流密度和温度对各种代表性Fe-N-C电催化剂溶解行为的影响。结果表明,(-)数概念也适用于70℃下碱性电解质中的ORR和铁溶解。在酸性介质中应用(-)数更具挑战性,因为(-)数是ORR电流密度的函数。引入了一个动力学模型,表明随着电流密度的增加,催化剂层内部的局部pH值显著升高。(-)数对pH值的依赖性解释了在酸性电解质中的结果。考虑到这种依赖性,(-)数描述符也可以衡量酸性电解质中Fe-N-C的稳定性。据认为,这一概念也可以扩展到其他反应,从而能够更合理地筛选电催化剂的活性和稳定性。