Suppr超能文献

硅掺杂可增强原子分散的Fe-N/C电催化剂在酸性条件下氧还原反应的活性和稳定性。

Si Doping Enables Activity and Stability Enhancement on Atomically Dispersed Fe-N /C Electrocatalysts for Oxygen Reduction in Acid.

作者信息

Li Shenzhou, Li Zhiqiang, Huang Tianping, Xie Huan, Miao Zhengpei, Liang Jiashun, Pan Ran, Wang Tanyuan, Han Jiantao, Li Qing

机构信息

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.

Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China.

出版信息

ChemSusChem. 2023 Jan 9;16(1):e202201795. doi: 10.1002/cssc.202201795. Epub 2022 Nov 22.

Abstract

Fe-N-C represents the most promising non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) in fuel cells, but often suffers from poor stability in acid due to the dissolution of metal sites and the poor oxidation resistance of carbon substrates. In this work, silicon-doped iron-nitrogen-carbon (Si/Fe-N-C) catalysts were developed by in situ silicon doping and metal-polymer coordination. It was found that Si doping could not only promote the density of Fe-N /C active sites but also elevated the content of graphitic carbon through catalytic graphitization. The best-performing Si/Fe-N-C exhibited a half-wave potential of 0.817 V vs. reversible hydrogen electrode in 0.5 m H SO , outperforming that of undoped Fe-N-C and most of the reported Fe-N-C catalysts. It also exhibited significantly enhanced stability at elevated temperature (≥60 °C). This work provides a new way to develop non-precious metal ORR catalysts with improved activity and stability in acidic media.

摘要

铁 - 氮 - 碳是燃料电池中氧还原反应(ORR)最具潜力的非贵金属催化剂(NPMC),但由于金属位点的溶解和碳载体抗氧化性差,在酸性环境中稳定性往往较差。在这项工作中,通过原位硅掺杂和金属 - 聚合物配位制备了硅掺杂铁 - 氮 - 碳(Si/Fe-N-C)催化剂。研究发现,硅掺杂不仅可以提高Fe-N/C活性位点的密度,还能通过催化石墨化提高石墨碳的含量。性能最佳的Si/Fe-N-C在0.5 m H₂SO₄中相对于可逆氢电极的半波电位为0.817 V,优于未掺杂的Fe-N-C和大多数已报道的Fe-N-C催化剂。在高温(≥60°C)下,其稳定性也显著增强。这项工作为开发在酸性介质中具有更高活性和稳定性的非贵金属ORR催化剂提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验