Suppr超能文献

解读脂质代谢在非小细胞肺癌中的作用:从巨噬细胞亚型鉴定到预后模型开发。

Decoding the role of lipid metabolism in NSCLC: From macrophage subtype identification to prognostic model development.

作者信息

He Aoxiao, Huang Zhihao, Chen Xianglai, Qi Kai, Zhang Shan, Li Fan, Lu Hongcheng, Wang Jiakun, Peng Jinhua, Song Chao

机构信息

Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

出版信息

FASEB J. 2025 Apr 30;39(8):e70467. doi: 10.1096/fj.202500124.

Abstract

Lipid metabolism plays a pivotal role in shaping the tumor microenvironment, particularly by influencing macrophage function. This study aimed to identify lipid-associated macrophage (LAM) marker genes involved in the onset and progression of non-small cell lung cancer (NSCLC) through integrated single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (bulk RNA-seq) analyses. Mutation and RNA-seq data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were analyzed to explore the relationship between lipid metabolism pathways and NSCLC progression. scRNA-seq analysis revealed macrophage subtypes closely associated with lipid metabolism, with three key marker genes-S100A10, HLA-DMB, and CTSL-identified as predictive factors for patient prognosis. A prognostic risk scoring model was constructed and validated using survival analysis and ROC curves, demonstrating high accuracy in stratifying NSCLC patients by risk. Further in vivo experiments using subcutaneous tumor xenografts and lung metastasis models showed that S100A10 and CTSL promoted tumor growth and metastasis, while HLA-DMB inhibited these processes. Immune infiltration analysis highlighted the immunological relevance of the identified marker genes, providing insights into their functional roles. This study underscores the critical influence of LAMs in NSCLC progression and highlights a robust prognostic model that offers potential therapeutic targets for improving patient outcomes.

摘要

脂质代谢在塑造肿瘤微环境中起着关键作用,尤其是通过影响巨噬细胞功能。本研究旨在通过整合单细胞RNA测序(scRNA-seq)和批量RNA测序(bulk RNA-seq)分析,鉴定参与非小细胞肺癌(NSCLC)发生和发展的脂质相关巨噬细胞(LAM)标记基因。分析来自癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)的突变和RNA测序数据,以探索脂质代谢途径与NSCLC进展之间的关系。scRNA-seq分析揭示了与脂质代谢密切相关的巨噬细胞亚型,确定了三个关键标记基因——S100A10、HLA-DMB和CTSL——作为患者预后的预测因素。使用生存分析和ROC曲线构建并验证了预后风险评分模型,证明其在按风险对NSCLC患者进行分层方面具有很高的准确性。进一步使用皮下肿瘤异种移植和肺转移模型进行的体内实验表明,S100A10和CTSL促进肿瘤生长和转移,而HLA-DMB则抑制这些过程。免疫浸润分析突出了所鉴定标记基因的免疫学相关性,为其功能作用提供了见解。本研究强调了LAM在NSCLC进展中的关键影响,并突出了一个强大的预后模型,该模型为改善患者预后提供了潜在的治疗靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验