Suppr超能文献

由砷结合蛋白QueF和QueE介导的sp. OR-15中的砷生物吸附作用。

Arsenic biosorption mediated by arsenic-binding proteins QueF and QueE in sp. OR-15.

作者信息

Xu Qing, Tian Weishi, Liu Hongliang, Wang Gejiao, Shi Kaixiang

机构信息

National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.

School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China.

出版信息

Appl Environ Microbiol. 2025 May 21;91(5):e0044125. doi: 10.1128/aem.00441-25. Epub 2025 Apr 25.

Abstract

Microorganisms play a crucial role in arsenic transformation, with associated genes highly conserved within the operon. Although microorganisms can absorb arsenic, no specific genes responsible for intracellular sequestration have been found within this operon. This suggests that genes outside the operon may also contribute to bacterial arsenic resistance. Here, we identified an arsenic-resistant sp. OR-15 that exhibits consistent biosorption capacity for arsenic. Our findings indicate that the expression of heavy metal-related genes and , which are not located in the operon, is also induced by arsenite [As(III)]. When or is expressed in the arsenic-sensitive bacterium AW3110, it enhances both the resistance to As(III) and the biosorption capacity. Purified QueF and QueE demonstrate binding abilities for both As(III) and arsenate [As(V)]. Site-directed mutagenesis studies reveal that the conserved cysteine residue at position 101 in QueF and position 37 in QueE are critical for As(III) and As(V) binding. The transcriptional regulation mechanism involves the arsenic-responsive protein ArsR, which binds to the promoter region of the operon and regulates its expression. This study elucidates the molecular mechanisms underlying QueF/QueE-mediated arsenic biosorption in sp. OR-15.IMPORTANCEArsenic is a ubiquitous metalloid pollutant in the environment, and its bioavailable concentration significantly influences its toxicity. Microorganisms play a crucial role in the geochemical cycling of arsenic, with certain species capable of reducing its bioavailability through biosorption. Consequently, elucidating the mechanisms of bacterial biosorption of As(III) is essential. This study identifies arsenic-binding proteins, QueF and QueE, which are regulated by ArsR in sp. OR-15. These proteins can directly bind intracellular As(III), facilitating its biological fixation and mitigating the toxic effects of As(III) to cells. This discovery provides valuable insights into the microbial mechanisms of microbial arsenic biosorption.

摘要

微生物在砷转化过程中发挥着关键作用,相关基因在操纵子内高度保守。尽管微生物能够吸收砷,但在该操纵子内尚未发现负责细胞内螯合的特定基因。这表明操纵子外的基因可能也有助于细菌对砷的抗性。在此,我们鉴定出一株抗砷的[具体菌名] sp. OR - 15,它对砷表现出一致的生物吸附能力。我们的研究结果表明,位于操纵子外的重金属相关基因[基因名称1]和[基因名称2]的表达也受到亚砷酸盐[As(III)]的诱导。当[基因名称1]或[基因名称2]在对砷敏感的细菌AW3110中表达时,它增强了对As(III)的抗性以及生物吸附能力。纯化后的QueF和QueE对As(III)和砷酸盐[As(V)]均表现出结合能力。定点诱变研究表明,QueF中第101位的保守半胱氨酸残基和QueE中第37位的保守半胱氨酸残基对于As(III)和As(V)的结合至关重要。转录调控机制涉及砷响应蛋白ArsR,它与操纵子的启动子区域结合并调节其表达。本研究阐明了[具体菌名] sp. OR - 15中QueF/QueE介导的砷生物吸附的分子机制。

重要性

砷是环境中普遍存在的类金属污染物,其生物可利用浓度显著影响其毒性。微生物在砷的地球化学循环中起着关键作用,某些物种能够通过生物吸附降低其生物可利用性。因此,阐明细菌对As(III)的生物吸附机制至关重要。本研究鉴定出在[具体菌名] sp. OR - 15中受ArsR调控的砷结合蛋白QueF和QueE。这些蛋白可直接结合细胞内的As(III),促进其生物固定并减轻As(III)对细胞的毒性作用。这一发现为微生物砷生物吸附的机制提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dfa/12093948/f2cfa7967669/aem.00441-25.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验