Suppr超能文献

Mer在底物适应过程中的过表达影响生长和甲烷生成。

Mer overexpression in affects growth and methanogenesis during substrate adaptation.

作者信息

Brennan Darla, Lieber Dillon, Walter Mary, Price Morgan, Buan Nicole R

机构信息

Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.

出版信息

Appl Environ Microbiol. 2025 May 21;91(5):e0067525. doi: 10.1128/aem.00675-25. Epub 2025 Apr 25.

Abstract

Evidence suggests that multienzyme complexes are involved in biological methane production (methanogenesis), although the composition of the Wolfe Cycle methanogenesis complexes may vary between diverse methanoarchaeal taxa. Methylenetetrahydromethanopterin reductase (Mer) is the first committed step in C1 oxidation to CO during methylotrophic methanogenesis. However, Mer is downregulated when cells use acetate as a substrate. We hypothesized that Mer overexpression during methylotrophic methanogenesis would be beneficial, while overexpression during acetoclastic methanogenesis would be detrimental for energy conservation. To test this hypothesis, we overexpressed Mer and characterized strain physiology on methanol, acetate, and when switching substrates. We found that Mer overexpression results in faster growth on methanol, with less C fixation into biomass, and no effect on methanogenesis. Growth on acetate was not affected by Mer overexpression, but switching between substrates was affected. The native Mer overexpressing strain was slower to adjust from methanol to acetate and vice-versa. These data suggest that tight regulation of Mer expression is necessary to regulate C flux through methylotrophic versus acetoclastic methanogenesis pathways in .IMPORTANCEMethanoarchaea thrive near the "thermodynamic limit of life" and have likely evolved efficient mechanisms to control flux of substrates to conserve energy. Methylenetetrahydromethanopterin reductase (Mer) is a highly conserved, key enzyme in the Wood-Ljungdahl and Wolfe Cycle methanogenesis pathways. Our study sheds light on how Mer enzyme stoichiometry affects methanogenesis and suggests avenues for engineering the organism to promote renewable fuel or bioproduct synthesis.

摘要

有证据表明多酶复合体参与生物甲烷生成(产甲烷作用),尽管沃尔夫循环产甲烷复合体的组成在不同的甲烷古菌分类群中可能有所不同。亚甲基四氢甲蝶呤还原酶(Mer)是甲基营养型产甲烷过程中C1氧化为CO的第一个关键步骤。然而,当细胞以乙酸盐为底物时,Mer的表达会下调。我们推测,在甲基营养型产甲烷过程中过表达Mer会有益,而在乙酸裂解型产甲烷过程中过表达Mer会对能量守恒不利。为了验证这一假设,我们过表达Mer并对菌株在甲醇、乙酸盐以及切换底物时的生理特性进行了表征。我们发现,Mer过表达导致在甲醇上生长更快,固定到生物量中的C减少,并且对产甲烷没有影响。乙酸盐上的生长不受Mer过表达的影响,但底物切换受到影响。天然Mer过表达菌株从甲醇调整到乙酸盐以及反之的速度较慢。这些数据表明,严格调控Mer的表达对于调节通过甲基营养型与乙酸裂解型产甲烷途径的C通量是必要的。重要性甲烷古菌在“生命热力学极限”附近繁盛,并且可能已经进化出有效的机制来控制底物通量以节约能量。亚甲基四氢甲蝶呤还原酶(Mer)是伍德-Ljungdahl和沃尔夫循环产甲烷途径中一种高度保守的关键酶。我们的研究揭示了Mer酶化学计量如何影响产甲烷作用,并为改造生物体以促进可再生燃料或生物产品合成提供了途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/12093972/5e421239900a/aem.00675-25.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验