文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚合茜素红-无机杂化纳米结构(PARIHN)作为一种用于新冠病毒免疫吸附测定的新型荧光标记物。

Polymerized Alizarin Red-Inorganic Hybrid Nanoarchitecture (PARIHN) as a Novel Fluorogenic Label for the Immunosorbent Assay of COVID-19.

作者信息

Kaladari Fatema, El-Maghrabey Mahmoud, Kishikawa Naoya, El-Shaheny Rania, Kuroda Naotaka

机构信息

Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.

Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.

出版信息

Biosensors (Basel). 2025 Apr 16;15(4):256. doi: 10.3390/bios15040256.


DOI:10.3390/bios15040256
PMID:40277569
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12025067/
Abstract

This study seeks to develop and implement a non-enzymatic fluorescent labeling for immunoassay and immunochromatographic assay (ICAs) targeting SARS-CoV-2, to meet the extensive interest and need for effective COVID-19 diagnosis. In this manuscript, we delineate the development, synthesis, and evaluation of a novel quinone polymer zinc hybrid nanoarchitecture, referred to as polymerized alizarin red-inorganic hybrid nanoarchitecture (PARIHN), which integrates an antibody for direct use in fluorescent immunoassays, offering enhanced sensitivity, reduced costs, and improved environmental sustainability. The designed nanoarchitecture can enhance the sensitivity of the immunoassay and enable rapid results without the complexities associated with enzymes, such as their low stability and high cost. At first, a chitosan-alizarin polymer was synthesized utilizing quinone-chitosan conjugation chemistry (QCCC). Then, the chitosan-alizarin polymer was embedded with the detection antibody using zinc ion, forming PARIHN, which was proven to be a stable label with the ability to enhance the assay stability and sensitivity of the immunoassay. PARIHN can react with phenylboronic acid (PBA) or boric acid through its alizarin content to produce fluorescence signals with an LOD of 15.9 and 2.6 pm for PBA and boric acid, respectively, which is the first use of a boric acid derivative in signal generation in the immunoassay. Furthermore, PARIHN demonstrated high practicality in detecting SARS-CoV-2 nucleoprotein in fluorescence (PBA and boric acid) systems with an LOD of 0.76 and 10.85 pm, respectively. Furthermore, owing to the high brightness of our PARIHN fluorogenic reaction, our labeling approach was extended to immunochromatographic assays for SARS-CoV-2 with high sensitivity down to 9.45 pg/mL.

摘要

本研究旨在开发并实施一种针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的非酶促荧光标记,用于免疫测定和免疫层析测定(ICA),以满足对有效的2019冠状病毒病(COVID-19)诊断的广泛关注和需求。在本论文中,我们描述了一种新型醌聚合物锌杂化纳米结构的开发、合成和评估,该结构被称为聚合茜素红-无机杂化纳米结构(PARIHN),它整合了一种抗体,可直接用于荧光免疫测定,具有更高的灵敏度、更低的成本和更好的环境可持续性。所设计的纳米结构可以提高免疫测定的灵敏度,并能快速得出结果,而无需面对与酶相关的复杂性,如酶的稳定性低和成本高。首先,利用醌-壳聚糖共轭化学(QCCC)合成了壳聚糖-茜素聚合物。然后,使用锌离子将壳聚糖-茜素聚合物与检测抗体包埋,形成PARIHN,事实证明它是一种稳定的标记物,能够提高免疫测定的稳定性和灵敏度。PARIHN可以通过其茜素成分与苯硼酸(PBA)或硼酸反应,分别产生检测限为15.9和2.6皮摩尔的荧光信号,这是硼酸衍生物首次用于免疫测定中的信号产生。此外,PARIHN在荧光(PBA和硼酸)系统中检测SARS-CoV-2核蛋白时表现出很高的实用性,检测限分别为0.76和10.85皮摩尔。此外,由于我们的PARIHN荧光反应具有高亮度,我们的标记方法被扩展到用于SARS-CoV-2的免疫层析测定,灵敏度高达9.45 pg/mL。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/f94d7ad4ca2a/biosensors-15-00256-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/14cd8b771eaf/biosensors-15-00256-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/9f668c6f1bdc/biosensors-15-00256-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/370ccd8b966c/biosensors-15-00256-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/f257c87445fd/biosensors-15-00256-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/3e5b600245a7/biosensors-15-00256-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/a4e14bde2caa/biosensors-15-00256-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/a44baf46b5f7/biosensors-15-00256-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/10611086db68/biosensors-15-00256-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/1c09aed04d69/biosensors-15-00256-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/8e475b8768cf/biosensors-15-00256-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/18100667b1d6/biosensors-15-00256-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/844272ef2bd7/biosensors-15-00256-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/e688f74a46a9/biosensors-15-00256-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/c2227dd49361/biosensors-15-00256-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/f94d7ad4ca2a/biosensors-15-00256-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/14cd8b771eaf/biosensors-15-00256-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/9f668c6f1bdc/biosensors-15-00256-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/370ccd8b966c/biosensors-15-00256-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/f257c87445fd/biosensors-15-00256-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/3e5b600245a7/biosensors-15-00256-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/a4e14bde2caa/biosensors-15-00256-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/a44baf46b5f7/biosensors-15-00256-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/10611086db68/biosensors-15-00256-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/1c09aed04d69/biosensors-15-00256-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/8e475b8768cf/biosensors-15-00256-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/18100667b1d6/biosensors-15-00256-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/844272ef2bd7/biosensors-15-00256-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/e688f74a46a9/biosensors-15-00256-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/c2227dd49361/biosensors-15-00256-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3086/12025067/f94d7ad4ca2a/biosensors-15-00256-g011.jpg

相似文献

[1]
Polymerized Alizarin Red-Inorganic Hybrid Nanoarchitecture (PARIHN) as a Novel Fluorogenic Label for the Immunosorbent Assay of COVID-19.

Biosensors (Basel). 2025-4-16

[2]
Development of a Fluorescent Immunochromatographic Assay Based on Quantum Dot-Functionalized Two-Dimensional Monolayer TiC MXene Nanoprobes for the Simultaneous Detection of Influenza A Virus and SARS-CoV-2.

ACS Appl Mater Interfaces. 2023-8-2

[3]
Development, performance evaluation, and clinical application of a Rapid SARS-CoV-2 IgM and IgG Test Kit based on automated fluorescence immunoassay.

J Med Virol. 2021-5

[4]
Suitability of two rapid lateral flow immunochromatographic assays for predicting SARS-CoV-2 neutralizing activity of sera.

J Med Virol. 2021-4

[5]
Rapid detection of SARS-CoV-2 RNA using a one-step fast multiplex RT-PCR coupled to lateral flow immunoassay.

BMC Infect Dis. 2024-12-18

[6]
The instantly blocking-based fluorescent immunochromatographic assay for the detection of SARS-CoV-2 neutralizing antibody.

Front Cell Infect Microbiol. 2023

[7]
Comparison of Serologic Response of Hospitalized COVID-19 Patients Using 8 Immunoassays.

J Korean Med Sci. 2021-3-8

[8]
Performance of the COVID19SEROSpeed IgM/IgG Rapid Test, an Immunochromatographic Assay for the Diagnosis of SARS-CoV-2 Infection: a Multicenter European Study.

J Clin Microbiol. 2021-1-21

[9]
Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison.

Lancet Infect Dis. 2020-9-23

[10]
Enhancing Sensitivity in SARS-CoV-2 Rapid Antigen Testing through Integration of a Water-Soluble Polymer Wall.

Biosensors (Basel). 2024-6-12

引用本文的文献

[1]
Modulating Thermal Stability and Flexibility in Chitosan Films with Neutral Polyol-Boric Acid Complexes.

Biomacromolecules. 2025-7-14

本文引用的文献

[1]
Ratiometric fluorescence probe based on boric acid-modified carbon dots and alizarin red for sensitive and rapid detection of glyphosate.

Mikrochim Acta. 2024-10-10

[2]
Simple and Ultrasensitive Nanozyme-Linked Immunosorbent Assay for SARS-CoV-2 Detection on a Syringe-Driven Filtration Device.

ACS Appl Mater Interfaces. 2024-8-28

[3]
An Analysis of the Biotin-(Strept)avidin System in Immunoassays: Interference and Mitigation Strategies.

Curr Issues Mol Biol. 2023-10-31

[4]
Ultrabright Fluorescent Nanorod-Based Immunochromatographic with Low Background for Advancing Detection Performance.

Anal Chem. 2023-11-14

[5]
Electrochemical detection of SARS-CoV-2 based on copper nanoflower-triggered growth of electroactive polymers.

Analyst. 2023-7-26

[6]
Single-molecule immunoassay technology: Recent advances.

Talanta. 2023-12-1

[7]
Alizarin: Prospects and sustainability for food safety and quality monitoring applications.

Colloids Surf B Biointerfaces. 2023-3

[8]
The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics.

Virol J. 2023-1-10

[9]
Enzyme linked oligonucleotide assay for the sensitive detection of SARS-CoV-2 variants.

Front Cell Infect Microbiol. 2022

[10]
Recent Advances in Construction and Application of Metal-Nanozymes in Pharmaceutical Analysis.

Crit Rev Anal Chem. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索