Suppr超能文献

一种基于动态柔顺基元控制器的具有力和振动触觉反馈的新型手部遥操作方法。

A Novel Hand Teleoperation Method with Force and Vibrotactile Feedback Based on Dynamic Compliant Primitives Controller.

作者信息

Hu Peixuan, Huang Xiao, Wang Yunlai, Li Hui, Jiang Zhihong

机构信息

National Key Laboratory of Autonomous Intelligent Unmanned Systems (KAIUS), Key Laboratory of Biomimetic Robots and Systems of Chinese Ministry of Education, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Biomimetics (Basel). 2025 Mar 21;10(4):194. doi: 10.3390/biomimetics10040194.

Abstract

Teleoperation enables robots to perform tasks in dangerous or hard-to-reach environments on behalf of humans, but most methods lack operator immersion and compliance during grasping. To significantly enhance the operator's sense of immersion and achieve more compliant and adaptive grasping of objects, we introduce a novel teleoperation method for dexterous robotic hands. This method integrates finger-to-finger force and vibrotactile feedback based on the Fuzzy Logic-Dynamic Compliant Primitives (FL-DCP) controller. It employs fuzzy logic theory to identify the stiffness of the object being grasped, facilitating more effective manipulation during teleoperated tasks. Utilizing Dynamic Compliant Primitives, the robotic hand implements adaptive impedance control in torque mode based on stiffness identification. Then the immersive bilateral teleoperation system integrates finger-to-finger force and vibrotactile feedback, with real-time force information from the robotic hand continuously transmitted back to the operator to enhance situational awareness and operational judgment. This bidirectional feedback loop increases the success rate of teleoperation and reduces operator fatigue, improving overall performance. Experimental results show that this bio-inspired method outperforms existing approaches in compliance and adaptability during teleoperation grasping tasks. This method mirrors how human naturally modulate muscle stiffness when interacting with different objects, integrating human-like decision-making and precise robotic control to advance teleoperated systems and pave the way for broader applications in remote environments.

摘要

远程操作使机器人能够代表人类在危险或难以到达的环境中执行任务,但大多数方法在抓取过程中缺乏操作员的沉浸感和顺应性。为了显著增强操作员的沉浸感并实现对物体更顺应和自适应的抓取,我们引入了一种用于灵巧机器人手的新型远程操作方法。该方法基于模糊逻辑 - 动态顺应基元(FL-DCP)控制器集成了手指间力和振动触觉反馈。它采用模糊逻辑理论来识别被抓取物体的刚度,便于在远程操作任务期间进行更有效的操作。利用动态顺应基元,机器人手基于刚度识别在扭矩模式下实现自适应阻抗控制。然后,沉浸式双边远程操作系统集成了手指间力和振动触觉反馈,来自机器人手的实时力信息持续传输回操作员,以增强态势感知和操作判断。这种双向反馈回路提高了远程操作的成功率并减少了操作员疲劳,提升了整体性能。实验结果表明,这种受生物启发的方法在远程操作抓取任务的顺应性和适应性方面优于现有方法。该方法反映了人类在与不同物体交互时自然调节肌肉刚度的方式,将类人决策与精确的机器人控制相结合,推动了远程操作系统的发展,并为在远程环境中的更广泛应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18d7/12024826/a75fe252194e/biomimetics-10-00194-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验