Suppr超能文献

基于视觉的拟人手臂系统在基于协同的控制框架中的抓握学习。

Vision-based grasp learning of an anthropomorphic hand-arm system in a synergy-based control framework.

机构信息

Prisma Lab, University of Naples Federico II (DIETI), Naples, Italy.

Industry AMS, Naples, Italy.

出版信息

Sci Robot. 2019 Jan 30;4(26). doi: 10.1126/scirobotics.aao4900.

Abstract

In this work, the problem of grasping novel objects with an anthropomorphic hand-arm robotic system is considered. In particular, an algorithm for learning stable grasps of unknown objects has been developed based on an object shape classification and on the extraction of some associated geometric features. Different concepts, coming from fields such as machine learning, computer vision, and robot control, have been integrated together in a modular framework to achieve a flexible solution suitable for different applications. The results presented in this work confirm that the combination of learning from demonstration and reinforcement learning can be an interesting solution for complex tasks, such as grasping with anthropomorphic hands. The imitation learning provides the robot with a good base to start the learning process that improves its abilities through trial and error. The learning process occurs in a reduced dimension subspace learned upstream from human observation during typical grasping tasks. Furthermore, the integration of a synergy-based control module allows reducing the number of trials owing to the synergistic approach.

摘要

在这项工作中,考虑了使用拟人手臂机器人系统抓取新物体的问题。特别是,基于物体形状分类和一些相关几何特征的提取,开发了一种用于学习未知物体稳定抓取的算法。来自机器学习、计算机视觉和机器人控制等领域的不同概念已经集成到一个模块化框架中,以实现适合不同应用的灵活解决方案。本文介绍的结果证实,基于演示的学习和强化学习的结合可以为复杂任务(如拟人手抓取)提供一个有趣的解决方案。模仿学习为机器人提供了一个良好的基础,使其能够开始学习过程,通过反复试验来提高其能力。学习过程发生在上游从人类在典型抓取任务中的观察中学习到的一个降维子空间中。此外,基于协同的控制模块的集成允许减少由于协同方法而导致的试验次数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验