Chandraiahgari Chandrakanth Reddy, Gottardi Gloria, Speranza Giorgio, Muzzi Beatrice, Dalessandro Domenico, Pedrielli Andrea, Micheli Victor, Bartali Ruben, Laidani Nadhira Bensaada, Testi Matteo
Center for Sustainable Energy, Fondazione Bruno Kessler (FBK), 38123 Trento, Italy.
Center for Sensors and Devices, Fondazione Bruno Kessler (FBK), 38123 Trento, Italy.
Membranes (Basel). 2025 Apr 7;15(4):115. doi: 10.3390/membranes15040115.
Sputtering onto liquids is rapidly gaining attention for the green and controlled dry synthesis of ultrapure catalysts nanomaterials. In this study, we present a clean and single-step method for the synthesis of gold nanoparticles directly in polyethylene glycol (PEG) liquid using radio frequency (RF) magnetron sputtering and by subsequently transferring them to Nafion ionomer, fabricating a catalyst-coated membrane (CCM), an essential component of the proton exchange membrane water electrolyzer (PEMWE). The samples were systematically characterized at different stages of process development. The innovative transfer process resulted in a monodispersed homogeneous distribution of catalyst particles inside CCM while retaining their nascent nanoscale topography. The chemical analysis confirmed the complete removal of the trapped PEG through the process optimization. The electrochemical catalytic activity of the optimized CCM was verified, and the hydrogen evolution reaction (HER) in acidic media appeared outstanding, a vital step in water electrolysis toward H production. Therefore, this first study highlights the advantages of RF sputtering in liquid for nanoparticle synthesis and its direct application in preparing CCM, paving the way for the development of innovative membrane preparation techniques for water electrolysis.
溅射至液体上正迅速引起人们的关注,因为它可用于超纯催化剂纳米材料的绿色且可控的干法合成。在本研究中,我们展示了一种清洁的单步方法,即使用射频(RF)磁控溅射直接在聚乙二醇(PEG)液体中合成金纳米颗粒,随后将其转移至Nafion离聚物中,制备催化剂涂覆膜(CCM),这是质子交换膜水电解槽(PEMWE)的关键组件。在工艺开发的不同阶段对样品进行了系统表征。创新的转移过程使催化剂颗粒在CCM内部呈单分散均匀分布,同时保留了其初始的纳米级形貌。化学分析证实,通过工艺优化可完全去除截留的PEG。验证了优化后的CCM的电化学催化活性,其在酸性介质中的析氢反应(HER)表现出色,这是水电解制氢过程中的关键一步。因此,这项首次研究突出了液体中射频溅射在纳米颗粒合成方面的优势及其在制备CCM中的直接应用,为水电解创新膜制备技术的发展铺平了道路。