Gerardo Heloísa, Lourenço Tânia, Torres Júlio, Ferreira Manuela, Aveleira Célia, Simões Susana, Ferreira Lino, Cavadas Cláudia, Oliveira Paulo J, Teixeira José, Grãos Mário
CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
Eur J Clin Invest. 2025 Sep;55(9):e70051. doi: 10.1111/eci.70051. Epub 2025 Apr 25.
Extracellular matrix (ECM) stiffness is increasingly recognized as a critical regulator of cellular behaviour, governing processes such as proliferation, differentiation, and metabolism. Neurodegenerative diseases are characterized by mitochondrial dysfunction, oxidative stress, impaired autophagy, and progressive softening of the brain tissue, yet research into how mechanical cues influence cellular metabolism in this context remains scarce.
In this study, we evaluated the long-term effects of brain-compliant, soft ECM on mitochondrial bioenergetics, redox balance, and autophagic capacity in human neuroblastoma (SH-SY5Y) and mouse hippocampal (HT22) cell lines, as well as primary mouse neurons.
We observed that prolonged exposure to soft ECM does not impact cell proliferative capacity of neuronal cells but results in mitochondrial bioenergetic dysfunction, redox imbalance, and disrupted autophagic flux. These findings were consistently validated across both human and mouse neuronal cells. Our data indicate a decreased maximal autophagic capacity in cells exposed to long-term soft ECM, potentially due to an imbalance in autophagosome formation and degradation, as demonstrated by decreased LC3 II levels following chloroquine-induced autophagic flux inhibition. This impairment in autophagy was coupled with increased cellular oxidative stress, further indicating metabolic alterations.
These findings emphasize the critical role of ECM stiffness in regulating neuronal cell metabolism and suggest that prolonged exposure to soft ECM may mimic key aspects of neurodegenerative disease pathology, thereby enhancing the physiological relevance of in vitro models. This study underscores the necessity for further research into ECM mechanics as a contributing factor in neurodegenerative disease progression and as a potential target for therapeutic strategies.
细胞外基质(ECM)硬度日益被视为细胞行为的关键调节因子,控制着细胞增殖、分化和代谢等过程。神经退行性疾病的特征是线粒体功能障碍、氧化应激、自噬受损以及脑组织逐渐软化,但在此背景下,关于机械信号如何影响细胞代谢的研究仍然匮乏。
在本研究中,我们评估了顺应脑的柔软ECM对人神经母细胞瘤(SH-SY5Y)和小鼠海马(HT22)细胞系以及原代小鼠神经元的线粒体生物能量学、氧化还原平衡和自噬能力的长期影响。
我们观察到,长时间暴露于柔软ECM不会影响神经元细胞的增殖能力,但会导致线粒体生物能量功能障碍、氧化还原失衡和自噬流中断。这些发现已在人和小鼠神经元细胞中得到一致验证。我们的数据表明,长期暴露于柔软ECM的细胞中最大自噬能力下降可能是由于自噬体形成和降解失衡,氯喹诱导的自噬流抑制后LC3 II水平降低证明了这一点。自噬的这种损伤与细胞氧化应激增加相关,进一步表明代谢改变。
这些发现强调了ECM硬度在调节神经元细胞代谢中的关键作用,并表明长时间暴露于柔软ECM可能模拟神经退行性疾病病理学的关键方面,从而增强体外模型的生理相关性。本研究强调有必要进一步研究ECM力学作为神经退行性疾病进展的一个促成因素以及作为治疗策略的潜在靶点。