López-Molina Laura, Pereda-Velarde Alba, di Franco Nadia, Aerts Imme, Sebastià Elisa, Valls-Roca Laura, Guitart-Mampel Mariona, Garrabou Gloria, Gines Silvia
Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, 08036, Spain.
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
Cell Commun Signal. 2025 Jul 16;23(1):341. doi: 10.1186/s12964-025-02341-6.
BACKGROUND: Deficits in mitochondrial bioenergetics and dynamics are strongly implicated in the selective vulnerability of striatal neurons in Huntington´s disease. Beyond these neuron-intrinsic factor, increasing evidence suggest that non-neuronal mechanisms, particularly astrocytic dysfunction involving disrupted homeostasis and metabolic support also contribute to disease progression. These findings underscore the critical role of metabolic crosstalk between neurons and astrocytes in maintaining striatal integrity. However, it remains unclear whether this impaired communication affects the transfer of mitochondria from astrocytes to striatal neurons, a potential metabolic support mechanism that may be compromised in Huntington´s Disease. METHODS: Primary striatal astrocytes were obtained from wild-type and R6/1 mice to investigate mitochondrial dynamics. Expression levels of key mitochondrial fusion and fission proteins were quantified by Western blotting and RT-PCR. Mitochondria morphology, oxidative stress and membrane potential were assessed using confocal microscopy following staining with mitochondria-specific dyes. Mitochondrial respiration was measured using the Oxygraph-2k respirometer system (Oroboros Instruments). Transmitophagy was evaluated by confocal imaging after labeling astrocytic mitochondria with Mitotracker dyes. To assess the functional impact of mitochondrial transfer on neurons, Sholl analysis, neuronal death and oxidative stress levels were quantified using specific fluorogenic probes. RESULTS: Striatal astrocytes from HD mice exhibited a significant increase in mitochondrial fission, and mitochondrial oxidative stress, mirroring alterations previously reported in striatal neurons. Analysis of mitochondrial oxygen consumption rate (OCR) revealed elevated respiration activity and enhanced ATP-linked respiration, indicative of a hypermetabolic state. Concurrently, increased lactate production suggested a shift toward dysregulated astrocytic energy metabolism. These mitochondrial alterations were functionally detrimental: astrocytic mitochondria derived from HD mice when taken up by striatal neurons via transmitophagy, led to reduced neuronal branching and disrupted oxidative homeostasis. CONCLUSIONS: Our findings demonstrate that striatal astrocytes from HD mice exhibit a hypermetabolic phenotype, characterized by increased mitochondrial respiration, disrupted mitochondrial dynamics, and elevated mitochondrial oxidative stress. Importantly, we identify a novel mechanism of astrocyte-neuron interaction involving the transfer of dysfunctional mitochondria from astrocytes to neurons. The uptake of these compromised mitochondria by striatal neurons results in reduced neuronal branching and increased reactive oxygen species (ROS) production. Collectively, these results highlight the pathological relevance of impaired astrocyte-to-neuron mitochondrial transfer and emphasize the contributory role of astrocytic dysfunction in Huntington´s disease progression.
背景:线粒体生物能量学和动力学缺陷与亨廷顿病纹状体神经元的选择性易损性密切相关。除了这些神经元内在因素外,越来越多的证据表明,非神经元机制,特别是涉及内环境稳态破坏和代谢支持的星形胶质细胞功能障碍,也会促进疾病进展。这些发现强调了神经元与星形胶质细胞之间的代谢串扰在维持纹状体完整性方面的关键作用。然而,尚不清楚这种受损的通讯是否会影响线粒体从星形胶质细胞向纹状体神经元的转移,这是一种在亨廷顿病中可能受损的潜在代谢支持机制。 方法:从野生型和R6/1小鼠中获取原代纹状体星形胶质细胞,以研究线粒体动力学。通过蛋白质免疫印迹法和逆转录聚合酶链反应对关键线粒体融合和裂变蛋白的表达水平进行定量分析。在用线粒体特异性染料染色后,使用共聚焦显微镜评估线粒体形态、氧化应激和膜电位。使用Oxygraph-2k呼吸计系统(奥罗波若斯仪器公司)测量线粒体呼吸。在用Mitotracker染料标记星形胶质细胞线粒体后,通过共聚焦成像评估转位自噬。为了评估线粒体转移对神经元的功能影响,使用特定的荧光探针定量分析Sholl分析、神经元死亡和氧化应激水平。 结果:来自亨廷顿病小鼠的纹状体星形胶质细胞线粒体裂变和线粒体氧化应激显著增加,这与之前在纹状体神经元中报道的变化一致。线粒体耗氧率(OCR)分析显示呼吸活性升高,与ATP相关的呼吸增强,表明处于高代谢状态。同时,乳酸产生增加表明星形胶质细胞能量代谢失调。这些线粒体改变在功能上是有害的:来自亨廷顿病小鼠的星形胶质细胞线粒体通过转位自噬被纹状体神经元摄取后,会导致神经元分支减少和氧化稳态破坏。 结论:我们的研究结果表明,来自亨廷顿病小鼠的纹状体星形胶质细胞表现出高代谢表型,其特征是线粒体呼吸增加、线粒体动力学破坏和线粒体氧化应激升高。重要的是,我们发现了一种新的星形胶质细胞与神经元相互作用机制,涉及功能失调的线粒体从星形胶质细胞向神经元的转移。纹状体神经元摄取这些受损线粒体后,会导致神经元分支减少和活性氧(ROS)生成增加。总的来说,这些结果突出了星形胶质细胞向神经元线粒体转移受损的病理相关性,并强调了星形胶质细胞功能障碍在亨廷顿病进展中的作用。
Cell Commun Signal. 2025-7-16
Cell Commun Signal. 2024-6-11
Proc Natl Acad Sci U S A. 2023-6-13
J Comp Neurol. 2024-8
Trends Endocrinol Metab. 2024-10
Signal Transduct Target Ther. 2023-9-6
Antioxidants (Basel). 2023-8-10
Cell Mol Life Sci. 2023-8-3