Verkuijl Sebald A N, Del Corsano Giuseppe, Capriotti Paolo, Yen Pei-Shi, Inghilterra Maria Grazia, Selvaraj Prashanth, Hoermann Astrid, Martinez-Sanchez Aida, Ukegbu Chiamaka Valerie, Kebede Temesgen M, Vlachou Dina, Christophides George K, Windbichler Nikolai
Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, WA, USA.
Nat Commun. 2025 Apr 25;16(1):3923. doi: 10.1038/s41467-025-58954-5.
Gene drive technology presents a promising approach to controlling malaria vector populations. Suppression drives are intended to disrupt essential mosquito genes whereas modification drives aim to reduce the individual vectorial capacity of mosquitoes. Here we present a highly efficient homing gene drive in the African malaria vector Anopheles gambiae that targets the microRNA gene mir-184 and combines suppression with modification. Homozygous gene drive (miR-184) individuals incur significant fitness costs, including high mortality following a blood meal, that curtail their propensity for malaria transmission. We attribute this to a role of miR-184 in regulating solute transport in the mosquito gut. However, females remain fully fertile, and pure-breeding miR-184 populations suitable for large-scale releases can be reared under laboratory conditions. Cage invasion experiments show that miR-184 can spread to fixation thereby reducing population fitness, while being able to propagate a separate antimalarial effector gene at the same time. Modelling indicates that the miR-184 drive integrates aspects of population suppression and population replacement strategies into a candidate strain that should be evaluated further as a tool for malaria eradication.
基因驱动技术为控制疟疾病媒种群提供了一种很有前景的方法。抑制性驱动旨在破坏蚊子的关键基因,而修饰性驱动则旨在降低蚊子个体的传病力。在此,我们展示了一种在非洲疟疾媒介冈比亚按蚊中针对微小RNA基因mir-184的高效归巢基因驱动,它将抑制与修饰相结合。纯合基因驱动(miR-184)个体产生显著的适合度代价,包括吸血后高死亡率,这降低了它们传播疟疾的倾向。我们将此归因于miR-184在调节蚊子肠道溶质转运中的作用。然而,雌性仍完全可育,并且适合大规模释放的纯合miR-184种群可在实验室条件下饲养。笼内入侵实验表明,miR-184可扩散至固定状态,从而降低种群适合度,同时能够传播一个单独的抗疟效应基因。模型表明,miR-184驱动将种群抑制和种群替换策略的各方面整合到一个候选品系中,作为一种疟疾根除工具应进一步评估该品系。